数据结构——线性表的链式存储结构3(双向循环链表)

简介: 数据结构——线性表的链式存储结构3(双向循环链表)

目录

前言

定义

双向循环链表的构建

双向循环链表的初始化

新节点的创建

双向循环链表的尾插

双向循环链表的头插

双向循环链表数据的逐一打印

双向循环链表的尾删

双向循环链表的头删

双向循环链表某数据位置的查找

双向循环链表任意位置的插入

双向循环链表任意位置的删除

前言

在之前讲的链表中,有了头结点时,我们可以用O(1)的时间访问第一个结点,但对于要访问到最后一个结点,却需要O(n)的时间,因此出现了双向链表。

定义

在单链表的每个结点中,在设置一个指向其前驱结点的指针域,最后一个结点又指向头结点,头节点的前驱指针指向最后一个结点,从而构成一个回路。

image.png

双向循环链表的构建

typedef int LTDatype;
typedef struct ListNode
{ 
  struct ListNode* next;//后驱指针
  struct ListNode* prev;//前驱指针
  LTDatype data;
}ListNode;

双向循环链表的初始化

ListNode* ListInit(void)
{
  ListNode* phead = BuyListNode(0);
  phead->next = phead;
  phead->prev = phead;
  return phead;
}

初始化后

image.png

新节点的创建

ListNode* BuyListNode(LTDatype x)
{
  ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));
  newnode->data = x;
  newnode->next = NULL;
  newnode->prev = NULL; 
  return newnode;
}

双向循环链表的尾插

void pushback(ListNode* phead, LTDatype x)
{
  assert(phead);
  ListNode* tail = phead->prev;
  ListNode* newnode = BuyListNode(x);
  tail->next = newnode;
  newnode->prev = tail;
  newnode->next = phead;
  phead->prev = newnode;
}

双向循环链表的头插

void pushfront(ListNode* phead,LTDatype x)
{
  assert(phead);
  ListNode* newnode = BuyListNode(0);
  ListNode* first = phead->next;
  newnode->data = x;
  newnode->next = first;
  newnode->prev = phead;
  first->prev = newnode;
  phead->next = newnode;
}

双向循环链表数据的逐一打印

void ListPrint(ListNode*phead)
{
  ListNode* cur = phead->next;
  while (cur!= phead)
  {
    printf("%d ", cur->data);
    cur = cur->next;
  }
  printf("\n");
}

双向循环链表的尾删

void popback(ListNode* phead)
{
  assert(phead);
  assert(phead->next != phead);
  ListNode* tail = phead->prev;
  ListNode* tail2 = tail->prev;
  phead->prev = tail2;
  tail2->next = phead;
  free(tail);
}

双向循环链表的头删

void popfront(ListNode* phead)
{
  assert(phead);
  assert(phead->next != phead);
  ListNode* first = phead->next;
  ListNode* second = first->next;
  phead->next = second;
  second->prev = phead;
  free(first);
}

双向循环链表某数据位置的查找

ListNode* ListFind(ListNode* phead, LTDatype x)
{
  assert(phead);
  ListNode* cur = phead->next; 
  while (cur != phead)
  {
    if (cur->data == x)
    {
      return cur;
    }
    cur = cur->next;
  }
  return NULL;
}

双向循环链表任意位置的插入

void ListInsert(ListNode* pos, LTDatype x)
{
  assert(pos);
  ListNode* prev = pos->prev;
  ListNode* newnode = BuyListNode(0);
  newnode->data = x;
  newnode->next = pos;
  prev->next = newnode;
  newnode->prev = prev;
  pos->prev = newnode;
}

双向循环链表任意位置的删除

void ListErase(ListNode* pos)
{
  assert(pos);
  ListNode* next = pos->next;
  ListNode* prev = pos->prev;
  next->prev = prev;
  prev->next = next;
  free(pos);
}
相关文章
|
1月前
【刷题记录】链表的回文结构
【刷题记录】链表的回文结构
|
27天前
|
存储 Java 开发者
揭秘!HashMap底层结构大起底:从数组到链表,再到红黑树,Java性能优化的秘密武器!
【8月更文挑战第24天】HashMap是Java集合框架中的核心组件,以其高效的键值对存储和快速访问能力广受开发者欢迎。在JDK 1.8及以后版本中,HashMap采用了数组+链表+红黑树的混合结构,实现了高性能的同时解决了哈希冲突问题。数组作为基石确保了快速定位;链表则用于处理哈希冲突;而当链表长度达到一定阈值时,通过转换为红黑树进一步提升性能。此外,HashMap还具备动态扩容机制,当负载因子超过预设值时自动扩大容量并重新哈希,确保整体性能。通过对HashMap底层结构的深入了解,我们可以更好地利用其优势解决实际开发中的问题。
47 0
|
2月前
【数据结构OJ题】链表的回文结构
牛客题目——链表的回文结构
29 0
【数据结构OJ题】链表的回文结构
|
3月前
|
存储 测试技术
【数据结构】操作受限的线性表,栈的具体实现
【数据结构】操作受限的线性表,栈的具体实现
46 5
|
3月前
|
存储 测试技术
【数据结构】操作受限的线性表,队列的具体实现
【数据结构】操作受限的线性表,队列的具体实现
36 4
|
3月前
|
算法 C语言
【数据结构与算法 经典例题】链表的回文结构(图文详解)
【数据结构与算法 经典例题】链表的回文结构(图文详解)
|
3月前
|
存储
【数据结构】详解链表结构
【数据结构】详解链表结构
14 0
|
3月前
|
存储 SQL 算法
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
|
3月前
|
存储 SQL 算法
LeetCode 题目 86:分隔链表
LeetCode 题目 86:分隔链表
|
3月前
|
存储 算法 Java
【经典算法】Leetcode 141. 环形链表(Java/C/Python3实现含注释说明,Easy)
【经典算法】Leetcode 141. 环形链表(Java/C/Python3实现含注释说明,Easy)
28 2