☆打卡算法☆LeetCode 106、从中序与后序遍历序列构造二叉树 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: “给定两个整数数组ino和pos,其中ino是二叉树的中序遍历,pos是二叉树的后序遍历,请你构造并返回这颗二叉树。”

一、题目


1、算法题目

“给定两个整数数组ino和pos,其中ino是二叉树的中序遍历,pos是二叉树的后序遍历,请你构造并返回这颗二叉树。”

题目链接:

来源:力扣(LeetCode)

链接:106. 从中序与后序遍历序列构造二叉树 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。

网络异常,图片无法展示
|

示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]
复制代码
示例 2:
输入: inorder = [-1], postorder = [-1]
输出: [-1]
复制代码


二、解题


1、思路分析

先来了解一下什么是中序遍历和后序遍历:

  • 中序遍历的顺序是先遍历左子树,再遍历根节点,最后遍历右子树
  • 后序遍历的顺序是先遍历左子树,再遍历右子树,最后遍历根节点

根据中序遍历和后序遍历的性质,我们可以知道后序遍历的数组最后一个元素就是根节点。

根据这个性质,我们可以使用根节点的信息在中序遍历的数组中找到根节点所在的下标。

然后根据其在中序遍历的数组分成左右两部分,就是左右子树,然后同样的方法递归递归构造下去。


2、代码实现

代码参考:

class Solution {
    int post_idx;
    int[] postorder;
    int[] inorder;
    Map<Integer, Integer> idx_map = new HashMap<Integer, Integer>();
    public TreeNode helper(int in_left, int in_right) {
        // 如果这里没有节点构造二叉树了,就结束
        if (in_left > in_right) {
            return null;
        }
        // 选择 post_idx 位置的元素作为当前子树根节点
        int root_val = postorder[post_idx];
        TreeNode root = new TreeNode(root_val);
        // 根据 root 所在位置分成左右两棵子树
        int index = idx_map.get(root_val);
        // 下标减一
        post_idx--;
        // 构造右子树
        root.right = helper(index + 1, in_right);
        // 构造左子树
        root.left = helper(in_left, index - 1);
        return root;
    }
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        this.postorder = postorder;
        this.inorder = inorder;
        // 从后序遍历的最后一个元素开始
        post_idx = postorder.length - 1;
        // 建立(元素,下标)键值对的哈希表
        int idx = 0;
        for (Integer val : inorder) {
            idx_map.put(val, idx++);
        }
        return helper(0, inorder.length - 1);
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n是树中的节点个数。

空间复杂度: O(n)

其中n是树中的节点个数。


三、总结

为了高效地查找根节点元素在中序表遍历数组中的下标,我们可以使用哈希表来存储中序序列。

在递归的过程中,利用哈希表(1)的时间复杂度查询当前根节点在中序遍历中的下标。

根绝后序遍历性质,递归创建右子树和左子树,创建左右子树的依赖关系,再存储右子树的节点,最后存储根节点。

返回根节点root。



相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
73 30
|
10天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
63 15
|
27天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
50 5
|
1月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
1月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
32 0
|
3月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
4月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
59 6
|
4月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
121 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
36 1