一、数据采集
1.采集地点数据(可做)
通过各方面的api、网络爬虫、数据免费提供中心、数据字典等。
//要求地点数据 包含1000w+,1周实现
尽量采用ztree的方式,对所有的地点数据进行结构化
2.时间数据提取(可做)
//采集所有关于节日节气的数据
表结构如下
name beginTime endTime defaultTime
二、信息识别建立
类别1 A A1 A2 A3 + B1 B2 B3…+ D1 D2 D3 D4
各个类别建立ztree树状图形式
(已经实现)
三、信息提取
(1)采用模板方式进行提取
A+信 息 1 + B + {信息1}+B+信息1+B+{信息2}
如果模板是 提醒 信 息 1 + 早 上 + {信息1}+早上+信息1+早上+{信息2}
说一句话是 提醒 我 早上 看书
那么信息1为 我 信息2 为看书
(算法代码已经实现)
(2)时间建立
1>基本的时间设置,例如 周一 通常是这个周一、yyyy年MM月dd日
2>时间的推理 比如下个周一 下一天 诸如此类需要进行推理出来
评判标准 >大于第三方服务、过测试组
四、相似信息识别
(1)例如小明昨天买游戏卡火影100花了30元
我们需要将信息提取出来
A 买游戏卡
B 花了30元
C 小明
D 昨天
E 小明昨天
然后根据我们所需要功能,进行对这些提取后的信息进行识别
思想:
1.知识生态化构建,也就是现在说的深度学习、反馈纠正,利用数据包的进行,实现半监督、无监督方式
2.多种方式进行评估,然后根据多种方式权重之和,进行判断是否