Google AI教你如何啃NLP中的硬骨头:开放域长形式问答系统

简介: 开放域长格式问答(Open-domain long-on answering (LFQA))是自然语言处理的一项基本挑战。谷歌AI利用最新的稀疏注意力模型和基于检索的模型推出了一个新系统,对于回答长篇问题有着杰出的效果。

微信图片_20220113004536.png  新智元报道  

来源:外媒

编辑:PY

【新智元导读】 开放域长格式问答(Open-domain long-on answering (LFQA))是自然语言处理的一项基本挑战谷歌AI利用最新的稀疏注意力模型和基于检索的模型推出了一个新系统,对于回答长篇问题有着杰出的效果。


开放域长时间回答(LFQA)问题是自然语言处理(NLP)中的一个基本挑战,涉及与给定查询相关的检索文档,并且根据它们生成详细的有大段文字的答案。


微信图片_20220113004539.png


近年来,在虚拟开放域问答系统(QA)方面取得了显著进展。

 

在这种技术中,一个的短语就足以回答一个问题,但是对于长形式的问题回答(LFQA)则表现不理想。

 

LFQA 是一个重要的任务,主要是因为它提供了一个测试生成文本模型的真实性的平台。

 

但是,现有的基准和评估指标并不完全适用于 LFQA 的进展。

 

在最近即将在 NAACL 2021上发表的一篇题为「长形式问答进步中的障碍」的论文中,Google.ai 提出了一个新的开放域长形式问答系统,该系统利用了 NLP 的两个最新进展:

 

一个是最先进的「稀疏注意模型」(sparse attention models),例如RT(Routing Transformer),允许基于注意力的模型扩展到长序列。


另一个是基于检索的模型,例如 REALM,可以方便检索与给定查询相关的维基百科文章。


微信图片_20220113004542.png 


该系统在生成答案之前,将来自多个检索到的维基百科文章中与给定问题相关的信息组合在一起。

 

ELI5是唯一可用于长形式问题回答的大规模公开数据集,该系统在 ELI5上实现了一个新的最先进的状态,。

 

然而,尽管该系统在公共排行榜上名列前茅,研究人员已经发现了一些关于ELI5数据集和相关的评估指标令人担忧的事情。

 

特别是,他们发现很少有证据表明,模型使用的检索条件和琐碎的基线(例如,输入复制)胜过现代系统。研究人员还观察到,数据集中存在明显的训练/验证重叠。


文本生成


NLP 模型的主要组成部分是 Transformer 体系结构。序列中的每一个令牌(token )都会照顾到序列中的每一个其他令牌,从而形成一个可以根据序列长度进行二次伸缩的模型。

 

RT 模型引入了一种动态的、基于内容的机制,降低了 Transformer 模型中注意力的复杂性。

 

NLP 模型的主要组成部分是 Transformer 体系结构。序列中的每一个令牌都会照顾到序列中的每一个其他令牌,从而形成一个可以根据序列长度进行二次伸缩的模型。RT 模型引入了一种动态的、基于内容的机制,降低了 Transformer 模型中注意力的复杂性。

 

RT 工作的关键因素是,每一个能参与到其他每个令牌的令牌通常是多余的,可以通过本地和全局注意力的组合来近似。

 

RT 模型是基于 PG-19数据集的语言建模目标进行预训练的。


微信图片_20220113004544.gif



image.gif


信息检索


研究人员将 RT 模型与来自 REALM 的检索结合起来,证明了 RT 模型的有效性。

 

REALM 模型是一种基于检索的模型,它利用最大限度的内部产品搜索来获取与特定查询或问题相关的维基百科文章。


研究人员通过使用「对比损失」提高了 REALM 检索的质量。

 

评估


该模型通过 ELI5数据集进行了测试,ELI5数据集是 KILT 基准的一部分,也是唯一公开的大规模 LFQA 数据集。接下来,他们对来自 KILT 的 ELI5数据集上的预训练 RT 模型和来自 c-REALM 的检索进行微调。

 

根据已经提交的结果,在 ELI5上的 KILT 排行榜上的长形式的问题回答结果第一位是 RT+c-REALM,得分为2.36。

 

尽管这种模式在排行榜上名列前茅,但仍然存在着一些挑战。


image.png 


研究人员几乎没有观察到任何证据,表明这个模型的下一代是建立在已检索到的文档之上的。

他们还发现 ELI5的培训、验证和测试集有明显的重叠。

 

此外,用于评估文本生成质量的 Rouge-L 度量标准也存在一些问题,因为这些文本生成标准基线微不足道。

 

研究人员希望社区共同努力解决这些问题,以便研究人员能够在这一领域取得有意义的进展。

参考资料:

https://www.marktechpost.com/2021/03/27/google-ai-introduces-a-new-system-for-open-domain-long-form-question-answering-lfqa/

相关文章
|
5月前
|
人工智能 自然语言处理 监控
掌握这6大环节,设计懂你所问的AI智能问答系统
三桥君深入解析企业智能化升级核心——AI大脑的构建路径。从RPA流程自动化、AI能力、AI中台到IoT平台,结合行业解决方案,助力企业实现智能运营,提升竞争力
422 5
|
3月前
|
人工智能 安全 架构师
开放、协同,2025 云栖大会“操作系统开源与 AI 进化分论坛”精彩回顾
唯有通过生态开放与技术共享,才能加速 AI 技术的普惠与产业化落地。
|
人工智能 大数据 开发者
阿里云技术解决方案开放免费试用,热门AI场景免费体验!
阿里云推出免费试用计划,2025年7月起,新老用户均可领取100点试用点,用于部署体验技术解决方案。完成部署还可再获最高100点,相当于一年200元云资源免费用。支持AI、大数据、安全等多个领域,涵盖DeepSeek部署、模型微调等热门场景。点击链接即可领取,快速上手云上方案。
|
11月前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
3848 85
通义灵码2.0全新升级,AI程序员全面开放使用
|
7月前
|
存储 人工智能 自然语言处理
flutter3.27接入deepseek-v3跨平台ai流式聊天问答系统
原创基于flutter3.27整合接入deepseek搭建一款高颜值跨平台流式输出ai对话小助手。支持代码高亮、本地会话存储、支持手机端/桌面端显示。 支持markdown代码块高亮、代码块横向滚动、表格边框线、图片100%宽度渲染、图片预览、链接跳转。
577 14
|
9月前
|
人工智能 自然语言处理 安全
Bolt.diy:更灵活更开放的AI全栈开发工具
Bolt.new是一款爆火的AI全栈开发工具,允许用户在浏览器中运行Node.js环境并通过自然语言生成、编辑和部署Web应用。然而,它存在一定的封闭性,仅支持官方指定的大语言模型和Netlify部署。而Bolt.diy作为其开源版本,功能更强大灵活,支持多种大模型选择(如OpenAI、Anthropic等)、丰富的输入方式及多云部署选项(如Vercel、AWS)。此外,Bolt.diy还提供本地文件同步、代码下载到GitHub等功能,适用于快速原型设计、教育与企业级开发等多种场景。
605 1
Bolt.diy:更灵活更开放的AI全栈开发工具
|
8月前
|
人工智能 数据可视化 关系型数据库
23.5K star!零代码构建AI知识库,这个开源神器让问答系统开发像搭积木一样简单!
FastGPT 是一个基于大语言模型的智能知识库平台,提供开箱即用的数据处理、RAG检索和可视化AI工作流编排能力,让你无需编写代码就能轻松构建复杂的问答系统!
536 1
|
9月前
|
人工智能 自然语言处理 前端开发
【AI落地应用实战】大模型加速器2.0:基于 ChatDoc + TextIn ParseX+ACGE的RAG知识库问答系统
本文探讨了私有知识库问答系统的难点及解决方案,重点分析了企业知识管理中的痛点,如信息孤岛、知识传承依赖个人经验等问题。同时,介绍了IntFinQ这款知识管理工具的核心特点和实践体验,包括智能问答、深度概括与多维数据分析等功能。文章还详细描述了IntFinQ的本地化部署过程,展示了其从文档解析到知识应用的完整技术闭环,特别是自研TextIn ParseX引擎和ACGE模型的优势。最后总结了该工具对企业和开发者的价值,强调其在提升知识管理效率方面的潜力。
|
11月前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
665 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
11月前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
834 21

推荐镜像

更多