内存 &基础优化 | 学习笔记

简介: 快速学习内存 &基础优化。

开发者学堂课程【分布式数据库 HBase 快速入门:内存 &基础优化】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/101/detail/1767


内存 &基础优化


内容介绍

一、内存优化

二、基础优化


一、内存优化

HBase 操作过程中需要大量的内存开销,毕竟 Table 是可以缓存在内存中的,一般会分配整个可用内存的70%给 HBase 的 Java 堆。但是不建议分配非常大的堆内存,因为 GC 过程持续太久会导致 RegionServer 处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。

基础优化

1、允许在 HDFS 的文件中追加内容

vhdfs-site.xml、hbase-site.xmlv

属性:dfs.support.append

解释:开启 HDFs 追加同步,可以优秀的配合 HBase 的数据同步和持久化。默认值为true。

2.优化 DataNode 允许的最大文件打开数

hdfs-site.xmlv

属性: dfs.datanode.max.transfer.threads

解释: HBase 一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:40964

3.优化延迟高的数据操作的等待时间

hdfs-site.xml

属性:dfs.image.transfer.timeout

解释:如果对于某一次数据操作来讲,延迟非常高,socket 需要等待更长的时间,建议把该值设置为更大的值(默认 6000o毫秒),以确保 socket 不会被 timeout  掉。

4.优化数据的写入效率

mapred-site.xml

属性:

mapreduce.map.outpdt.compress

mapreduce.map. output.compress.codec

解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为 true,第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec 或者其他压缩方式。

5.设置 RPC 监听数量

hbase-site.xml

属性:hbase.regionserver.handler.count

解释,默认值为30,用于指定 RPc 监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。

6.优化 HStore文件大小

hbase-site.xml

属性:hbase.hregion.max.filesize

解程,默认值10737418240 (10GB),如果需要运行 HBase 的 MR 任务,可以减小此值,因为一个 region 对应一个 map 任务,如果单个 region 过大,会导致 map 任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个 region 会被切分为两个 Hfile。

7.优化 hbase 客户端缓存

hbase-site.xml

属性:hbase.client.write.buffer

解释:用于指定 HBase 客户端缓存,增大该值可以减少 RPC 调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少 RPc 次数的目的。

8.指定 scan.next 扫描 HBase 所获取的行数

hbase-site.xml

属性:hbase.client.scanner.caching

解释:用于指定 scan.next 方法获取的默认行数,值越大,消耗内存越大。

9. flush、compact、split 机制

当 MemStore 达到阈值,将 Memstore 中的数据 Flush 进 Storefile; compact 机制则是把 flush 出来的小文件合并成大的 storefile 文件。split 则是当 Region 达到阈值,会把过大的 Region 一分为二。

涉及属性:

即:128M就是 Memstore 的默认阈值

hbase.hregion.memstore.flush.size: 134217728

即:这个参数的作用是当单个 HRegion 内所有的 Memstore 大小总和超过指定值时,flush 该 HRegion 的所有 memstore。

RegionServer 的 flush 通过将请求添加一个队列,模拟生产消费模型来异步处理的。

那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发 OOM。

hbase.regionserver.global.memstore.upperLimit:0.4

hbase.regionserver.global.memstore.lowerLimit: 0.38

即:当 MemStore 使用内存总量达到 hbase.regionserver.global.memstore.upperLimit 指定值时,将会有多个Memstores flush 到文件中,MemStore flush 顺序是按照大小降序执行的,直到刷新到 MemStore 使用内存略小于 lowerLimit

相关文章
|
2月前
|
机器学习/深度学习 算法 PyTorch
125_训练加速:FlashAttention集成 - 推导注意力优化的独特内存节省
2025年,大型语言模型的训练面临着前所未有的挑战。随着模型参数量和序列长度的不断增加,传统注意力机制的内存瓶颈问题日益突出。FlashAttention作为一种突破性的注意力算法,通过创新的内存访问模式和计算优化,显著提升了训练效率和内存利用。
|
2月前
|
存储 机器学习/深度学习 PyTorch
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
|
5月前
|
缓存 固态存储 Windows
如何让内存发挥到最大效能?全面优化指南,提升电脑运行体验
电脑内存使用不合理会导致卡顿,本文教你如何优化内存性能。检查内存容量与主板支持上限,考虑升级或调整配置;关闭后台程序、管理浏览器标签、结束异常进程以释放内存;设置虚拟内存、调整视觉效果、定期重启提升效率;必要时增加内存条、选择高频内存、更换固态硬盘。避免盲目清理内存和依赖大内存忽视其他硬件瓶颈。只需合理设置,无需额外花钱,就能显著提升电脑速度。
|
8月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1628 0
|
5月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
298 4
AI代理内存消耗过大?9种优化策略对比分析
|
5月前
|
存储 人工智能 API
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
599 0
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
|
6月前
|
缓存 监控 Cloud Native
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
359 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
|
4月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
178 0
|
6月前
|
存储 自然语言处理 算法
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
本文探讨了在构建对话系统时如何通过一种内存高效算法降低大语言模型(LLM)的Token消耗和运营成本。传统方法中,随着对话深度增加,Token消耗呈指数级增长,导致成本上升。
547 7
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
|
7月前
|
缓存 编解码 Android开发
Android内存优化之图片优化
本文主要探讨Android开发中的图片优化问题,包括图片优化的重要性、OOM错误的成因及解决方法、Android支持的图片格式及其特点。同时介绍了图片储存优化的三种方式:尺寸优化、质量压缩和内存重用,并详细讲解了相关的实现方法与属性。此外,还分析了图片加载优化策略,如异步加载、缓存机制、懒加载等,并结合多级缓存流程提升性能。最后对比了几大主流图片加载框架(Universal ImageLoader、Picasso、Glide、Fresco)的特点与适用场景,重点推荐Fresco在处理大图、动图时的优异表现。这些内容为开发者提供了全面的图片优化解决方案。
305 1