PostgreSQL 性能优化之 - 大锁与long sql/xact的蝴蝶效应

简介:

在使用数据库时,某些特定的因素结合在一起,就可能引发蝴蝶效应。
导致数据库性能的急剧下降。
本文要讲的是和以下几个因素有关的:

因素1
PG的锁排队机制,即使没有获得锁,只要在锁队列中就会造成锁竞争。

session A lock1 get  
session B lock2 wait lock1 release  
session C lock3 可能和lock1, lock2 冲突  
session D lock4 可能和lock1,2,3 冲突  

因素2
SQL响应变慢后,服务端程序通常会增加到数据库的连接来处理拥塞的请求

因素3
数据库的性能会随着连接数增加到一个值(通常是核数的3倍)后,性能开始下降

因素4
对象锁在事务结束时释放
例如在事务中查询表时,表的共享锁需要等到事务结束时释放。

以上4个因素加在一起,就可能引发一次应用级别的故障。

模拟
开启lock跟踪:

log_lock_waits = on   
deadlock_timeout = 1s  

创建测试表

postgres=# create table test(id int primary key, info text, crt_time timestamp);  
CREATE TABLE  
postgres=# insert into test select generate_series(1,10000000),md5(random()::text),clock_timestamp();  
INSERT 0 10000000  

测试脚本

vi test1.sql  
\setrandom id 1 10000000  
update test set info=info where id=:id;  

.1. pgbench1 模拟数据更新A。使用10个链接(假设正常只需要10个)
正常的性能

pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 10 -j 10 -T 10  
progress: 2.0 s, 65994.3 tps, lat 0.149 ms stddev 0.038  
progress: 3.0 s, 67706.5 tps, lat 0.145 ms stddev 0.051  
progress: 4.0 s, 72865.0 tps, lat 0.135 ms stddev 0.048  
progress: 5.0 s, 77664.2 tps, lat 0.126 ms stddev 0.032  
progress: 6.0 s, 77138.9 tps, lat 0.127 ms stddev 0.037  
progress: 7.0 s, 75941.3 tps, lat 0.129 ms stddev 0.061  
progress: 8.0 s, 77328.8 tps, lat 0.127 ms stddev 0.036  

开启长时间更新请求

pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 10 -j 10 -T 10000  

.2. 模拟一个查询长事务,查询表A
也可能是后台的whole vacuum prevent wrapper

postgres=# begin;  
BEGIN  
postgres=# select * from test limit 1;  
 id |               info               |          crt_time            
----+----------------------------------+----------------------------  
  1 | e86e219d51c39d16f78d77cf697395ca | 2016-03-16 16:07:49.814487  
(1 row)  

暂不结束事务, 持有test表的shared lock.

.3. 模拟一个DDL请求A

postgres=# alter table test add column c1 int;  

等待test shared lock锁释放

马上会堵塞正常的业务请求,tps降到0

progress: 53.0 s, 0.0 tps, lat -nan ms stddev -nan  
progress: 54.0 s, 0.0 tps, lat -nan ms stddev -nan  
progress: 55.0 s, 0.0 tps, lat -nan ms stddev -nan  
progress: 56.0 s, 0.0 tps, lat -nan ms stddev -nan  
progress: 57.0 s, 0.0 tps, lat -nan ms stddev -nan  
progress: 58.0 s, 0.0 tps, lat -nan ms stddev -nan  
progress: 59.0 s, 0.0 tps, lat -nan ms stddev -nan  

.4. 这个时候,业务并不知道数据库堵塞了,会增加更多的连接来处理用户的请求。甚至可能把连接塞满。
pgbench2 模拟拥塞更新A,新建500链接

pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 500 -j 500 -T 10000  

新增的连接会全部处于这样的状态:

digoal  25434  22068  0 16:21 ?        00:00:00 postgres: postgres postgres [local] PARSE waiting  
digoal  25437  22068  0 16:21 ?        00:00:00 postgres: postgres postgres [local] PARSE waiting  

.5. 结束长事务或结束DDL请求后,锁释放。
锁释放,大量并发的连接开始处理拥塞的请求
此时性能下降了一半
pgbench2

progress: 10.3 s, 270.5 tps, lat 1396.862 ms stddev 3498.526  
progress: 11.0 s, 34443.5 tps, lat 64.132 ms stddev 709.718  
progress: 12.0 s, 34986.1 tps, lat 14.229 ms stddev 18.469  
progress: 13.0 s, 36645.0 tps, lat 13.661 ms stddev 17.686  
progress: 14.0 s, 34570.1 tps, lat 14.463 ms stddev 18.716  
progress: 15.0 s, 36435.8 tps, lat 13.752 ms stddev 17.621  
progress: 16.0 s, 35513.3 tps, lat 14.052 ms stddev 18.087  
progress: 17.0 s, 35560.0 tps, lat 14.013 ms stddev 18.159  

pgbench1

progress: 59.0 s, 688.7 tps, lat 340.857 ms stddev 2734.371  
progress: 60.0 s, 733.0 tps, lat 13.659 ms stddev 18.501  
progress: 61.0 s, 816.0 tps, lat 12.237 ms stddev 16.941  
progress: 62.0 s, 811.0 tps, lat 12.328 ms stddev 16.715  
progress: 63.0 s, 809.9 tps, lat 12.370 ms stddev 17.370  
progress: 64.0 s, 750.1 tps, lat 13.338 ms stddev 17.745  

将后建立的500个连接释放后,恢复正常的性能

progress: 66.0 s, 1937.8 tps, lat 5.044 ms stddev 12.975  
progress: 67.0 s, 64995.8 tps, lat 0.157 ms stddev 0.757  
progress: 68.0 s, 73996.3 tps, lat 0.133 ms stddev 0.042  
progress: 69.0 s, 78099.4 tps, lat 0.125 ms stddev 0.038  

日志
可以追踪到锁等待的源头,但是不能追踪到大锁。

2016-03-16 16:25:57.531 CST,"postgres","postgres",48877,"[local]",56e91894.beed,3,"ALTER TABLE waiting",2016-03-16 16:25:56 CST,13/28,580426398,LOG,00000,"process 48877 still waiting for AccessExclusiveLock on relation 61245 of database 13241 after 1000.048 ms","Process holding the lock: 48557. Wait queue: 48877, 46333, 46331, 46338, 46334, 46339, 46335, 46340, 46337, 46328, 46336.",,,,,"alter table test add column c1 int;",,"ProcSleep, proc.c:1323","psql"  
2016-03-16 16:25:57.531 CST,"postgres","postgres",46333,"[local]",56e91871.b4fd,3,"BIND waiting",2016-03-16 16:25:21 CST,4/263058,0,LOG,00000,"process 46333 still waiting for RowExclusiveLock on relation 61245 of database 13241 after 1000.036 ms","Process holding the lock: 48557. Wait queue: 48877, 46333, 46331, 46338, 46334, 46339, 46335, 46340, 46337, 46328, 46336.",,,,,"update test set info=info where id=$1;",,"ProcSleep, proc.c:1323","pgbench"  
  
2016-03-16 16:26:10.191 CST,"postgres","postgres",49812,"[local]",56e918a1.c294,3,"PARSE waiting",2016-03-16 16:26:09 CST,14/29,0,LOG,00000,"process 49812 still waiting for RowExclusiveLock on relation 61245 of database 13241 after 1000.207 ms","Process holding the lock: 48557. Wait queue: 48877, 46333, 此处省略500+ PIDs, 50816, 50817.",,,,,"update test set info=info where id=$1;",8,"ProcSleep, proc.c:1323","pgbench"  
  
2016-03-16 16:26:19.367 CST,"postgres","postgres",48877,"[local]",56e91894.beed,4,"ALTER TABLE waiting",2016-03-16 16:25:56 CST,13/28,580426398,LOG,00000,"process 48877 acquired AccessExclusiveLock on relation 61245 of database 13241 after 22836.312 ms",,,,,,"alter table test add column c1 int;",,"ProcSleep, proc.c:1327","psql"  
2016-03-16 16:26:19.368 CST,"postgres","postgres",48877,"[local]",56e91894.beed,5,"ALTER TABLE",2016-03-16 16:25:56 CST,13/28,580426398,ERROR,42701,"column ""c1"" of relation ""test"" already exists",,,,,,"alter table test add column c1 int;",,"check_for_column_name_collision, tablecmds.c:5069","psql"  
  
2016-03-16 16:26:19.379 CST,"postgres","postgres",49814,"[local]",56e918a1.c296,4,"PARSE waiting",2016-03-16 16:26:09 CST,15/2,0,LOG,00000,"process 49814 acquired RowExclusiveLock on relation 61245 of database 13241 after 10177.162 ms",,,,,,"update test set info=info where id=$1;",8,"ProcSleep, proc.c:1327","pgbench"  

要追踪大锁,
可以使用以下SQL

with t_wait as                       
(select a.mode,a.locktype,a.database,a.relation,a.page,a.tuple,a.classid,  
a.objid,a.objsubid,a.pid,a.virtualtransaction,a.virtualxid,a,  
transactionid,b.query,b.xact_start,b.query_start,b.usename,b.datname   
  from pg_locks a,pg_stat_activity b where a.pid=b.pid and not a.granted),  
t_run as   
(select a.mode,a.locktype,a.database,a.relation,a.page,a.tuple,  
a.classid,a.objid,a.objsubid,a.pid,a.virtualtransaction,a.virtualxid,  
a,transactionid,b.query,b.xact_start,b.query_start,  
b.usename,b.datname from pg_locks a,pg_stat_activity b where   
a.pid=b.pid and a.granted)   
select r.locktype,r.mode r_mode,r.usename r_user,r.datname r_db,  
r.relation::regclass,r.pid r_pid,  
r.page r_page,r.tuple r_tuple,r.xact_start r_xact_start,  
r.query_start r_query_start,  
now()-r.query_start r_locktime,r.query r_query,w.mode w_mode,  
w.pid w_pid,w.page w_page,  
w.tuple w_tuple,w.xact_start w_xact_start,w.query_start w_query_start,  
now()-w.query_start w_locktime,w.query w_query    
from t_wait w,t_run r where  
  r.locktype is not distinct from w.locktype and  
  r.database is not distinct from w.database and  
  r.relation is not distinct from w.relation and  
  r.page is not distinct from w.page and  
  r.tuple is not distinct from w.tuple and  
  r.classid is not distinct from w.classid and  
  r.objid is not distinct from w.objid and  
  r.objsubid is not distinct from w.objsubid and  
  r.transactionid is not distinct from w.transactionid and  
  r.pid <> w.pid  
  order by   
  ((  case w.mode  
    when 'INVALID' then 0  
    when 'AccessShareLock' then 1  
    when 'RowShareLock' then 2  
    when 'RowExclusiveLock' then 3  
    when 'ShareUpdateExclusiveLock' then 4  
    when 'ShareLock' then 5  
    when 'ShareRowExclusiveLock' then 6  
    when 'ExclusiveLock' then 7  
    when 'AccessExclusiveLock' then 8  
    else 0  
  end  ) +   
  (  case r.mode  
    when 'INVALID' then 0  
    when 'AccessShareLock' then 1  
    when 'RowShareLock' then 2  
    when 'RowExclusiveLock' then 3  
    when 'ShareUpdateExclusiveLock' then 4  
    when 'ShareLock' then 5  
    when 'ShareRowExclusiveLock' then 6  
    when 'ExclusiveLock' then 7  
    when 'AccessExclusiveLock' then 8  
    else 0  
  end  )) desc,r.xact_start;  

优化措施或处理措施
.1. 养成大锁处理习惯, 配置锁等待超时
.2. 应用程序或中间件应该有自动释放空闲连接的功能
.3. auto_explain也不会记录锁等待的时间,所以不利于分析原因。只有从日志中才能分析。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
3月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
800 152
|
2月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
215 6
|
3月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
6月前
|
SQL 关系型数据库 MySQL
Go语言数据库编程:使用 `database/sql` 与 MySQL/PostgreSQL
Go语言通过`database/sql`标准库提供统一数据库操作接口,支持MySQL、PostgreSQL等多种数据库。本文介绍了驱动安装、连接数据库、基本增删改查操作、预处理语句、事务处理及错误管理等内容,涵盖实际开发中常用的技巧与注意事项,适合快速掌握Go语言数据库编程基础。
500 62
|
3月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
|
6月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
628 1
|
7月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
9月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
333 2
|
JSON JavaScript 前端开发
解决js中Long类型数据在请求与响应过程精度丢失问题(springboot项目中)
解决js中Long类型数据在请求与响应过程精度丢失问题(springboot项目中)
2010 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版