通过sqoop将mysql数据导入到hive中进行计算示例

简介: 通过sqoop将mysql数据导入到hive中进行计算示例

20181214135852317.png

hive计算示例

先将数据通过sqoop从mysql导入hive,在hive执行mysql的查询语句,得到与mysql一样的执行结果

步骤:

  1. mysql数据准备
  • account账号表
  • detail收支数据表
CREATE TABLE `account` (
  `id` int(11) PRIMARY KEY AUTO_INCREMENT,
  `account` varchar(20),
  `name` varchar(5),
  `age` int(3)
);
insert into account(account, name, age) values("tom@qq.com", "Tom", 23);
insert into account(account, name, age) values("jack@qq.com", "Jack", 20);
insert into account(account, name, age) values("jone@qq.com", "Jone", 22);
insert into account(account, name, age) values("jimi@qq.com", "Jimi", 25);
insert into account(account, name, age) values("black@qq.com", "Black", 24);
select * from account;
CREATE TABLE `detail` (
  `id` int(11) PRIMARY KEY AUTO_INCREMENT,
  `account` varchar(20),
  `income` double,
  `expenses` double,
  `time` varchar(10)
);
insert into detail(account, income, expenses, time) values("tom@qq.com", 10, 20, 2018-12-1);
insert into detail(account, income, expenses, time) values("jack@qq.com", 10, 30, 2018-12-4);
insert into detail(account, income, expenses, time) values("jone@qq.com", 13, 22, 2018-12-3);
insert into detail(account, income, expenses, time) values("jimi@qq.com", 45, 25, 2018-12-2);
insert into detail(account, income, expenses, time) values("black@qq.com", 34, 24, 2018-12-1);
insert into detail(account, income, expenses, time) values("tom@qq.com", 50, 20, 2018-12-1);
select * from detail;
  1. 创建hive表
create table account (
  id int, 
  account string, 
  name string, 
  age int
) row format delimited fields terminated by '\t';
create table detail (
  id int, 
  account string, 
  income double, 
  expenses double, 
  time string
) row format delimited fields terminated by '\t';
  1. 通过sqoop将mysq当中的数据直接导入到hive当中
sqoop import 
--connect jdbc:mysql://localhost:3306/mydata 
--username root 
--password 123456 
--table account 
--hive-import 
--hive-overwrite 
--hive-table account 
--fields-terminated-by '\t'
sqoop import --connect jdbc:mysql://localhost:3306/mydata --username root --password 123456 --table detail --hive-import --hive-overwrite --hive-table detail --fields-terminated-by '\t'
  1. 计算结果,mysql和hive中计算结果一致
select a.account, a.name, d.total 
from account as a 
join(
  select account, sum(income - expenses) as total 
  from detail group by account
) as d 
on a.account=d.account;

mysql计算结果

+--------------+-------+-------+
| account      | name  | total |
+--------------+-------+-------+
| black@qq.com | Black |    10 |
| jack@qq.com  | Jack  |   -20 |
| jimi@qq.com  | Jimi  |    20 |
| jone@qq.com  | Jone  |    -9 |
| tom@qq.com   | Tom   |    20 |
+--------------+-------+-------+

hive计算结果

black@qq.com  Black 10.0
jack@qq.com Jack  -20.0
jimi@qq.com Jimi  20.0
jone@qq.com Jone  -9.0
tom@qq.com  Tom  20.0

报错及解决

报错:

/tmp/hive on HDFS should be writable.

解决

> hadoop fs -chmod -R 777 /tmp

参考

hive启动出现权限错误 /tmp/hive on HDFS should be writable.

报错:

Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR

解决:

往/etc/profile最后加入

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*

然后刷新配置,source /etc/profile

参考:

ERROR hive.HiveConfig: Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
368 3
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
338 0
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
216 0
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
256 0
|
SQL 关系型数据库 MySQL
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
基于Hive的天气情况大数据分析系统(通过hive进行大数据分析将分析的数据通过sqoop导入到mysql,通过Django基于mysql的数据做可视化)
708 0
|
SQL 关系型数据库 HIVE
sqoop笔记——一次从Hive到PostgreSql的数据迁移
sqoop笔记——一次从Hive到PostgreSql的数据迁移
607 0
|
SQL 分布式计算 监控
Sqoop数据迁移工具使用与优化技巧:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入解析Sqoop的使用、优化及面试策略。内容涵盖Sqoop基础,包括安装配置、命令行操作、与Hadoop生态集成和连接器配置。讨论数据迁移优化技巧,如数据切分、压缩编码、转换过滤及性能监控。此外,还涉及面试中对Sqoop与其他ETL工具的对比、实际项目挑战及未来发展趋势的讨论。通过代码示例展示了从MySQL到HDFS的数据迁移。本文旨在帮助读者在面试中展现Sqoop技术实力。
1008 2
|
数据采集 SQL 分布式计算
数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop
数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop
2710 0
|
SQL Java 数据库
Sqoop【付诸实践 02】Sqoop1最新版 全库导入 + 数据过滤 + 字段类型支持 说明及举例代码(query参数及字段类型强制转换)
【2月更文挑战第10天】Sqoop【付诸实践 02】Sqoop1最新版 全库导入 + 数据过滤 + 字段类型支持 说明及举例代码(query参数及字段类型强制转换)
582 0
|
分布式计算 关系型数据库 Hadoop
使用Sqoop将数据从Hadoop导出到关系型数据库
使用Sqoop将数据从Hadoop导出到关系型数据库

推荐镜像

更多