Python爬虫:fake_useragent库模拟浏览器请求头

简介: Python爬虫:fake_useragent库模拟浏览器请求头

参考网站

  1. pypi网站:https://pypi.org/project/fake-useragent/
  2. User Agent String.Com :http://www.useragentstring.com/

简单示例

# -*- coding: utf-8 -*-
# @File    : fake_useragent_demo.py
# @Date    : 2018-05-28
from fake_useragent import UserAgent
ua = UserAgent()
print(ua.ie)
print(ua.opera)
print(ua.chrome)
print(ua.google)
print(ua.firefox)
print(ua.safari)
print(ua.random)
"""
Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.0; Trident/4.0; InfoPath.1; SV1; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 3.0.04506.30)
Opera/9.80 (Windows NT 6.0; U; en) Presto/2.7.39 Version/11.00
Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.93 Safari/537.36
Mozilla/5.0 (X11; CrOS i686 3912.101.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36
Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:21.0) Gecko/20100101 Firefox/21.0
Mozilla/5.0 (Windows; U; Windows NT 6.1; sv-SE) AppleWebKit/533.19.4 (KHTML, like Gecko) Version/5.0.3 Safari/533.19.4
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0) Opera 12.14
"""


相关文章
|
8月前
|
数据采集 测试技术 C++
无headers爬虫 vs 带headers爬虫:Python性能对比
无headers爬虫 vs 带headers爬虫:Python性能对比
|
4月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
415 0
|
6月前
|
数据采集 Web App开发 JavaScript
无头浏览器技术:Python爬虫如何精准模拟搜索点击
无头浏览器技术:Python爬虫如何精准模拟搜索点击
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
558 6
|
8月前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
1189 31
|
7月前
|
数据采集 存储 NoSQL
分布式爬虫去重:Python + Redis实现高效URL去重
分布式爬虫去重:Python + Redis实现高效URL去重
|
8月前
|
数据采集 XML 存储
Headers池技术在Python爬虫反反爬中的应用
Headers池技术在Python爬虫反反爬中的应用
|
10月前
|
数据采集 Web App开发 监控
深度解析:使用ChromeDriver和webdriver_manager实现无头浏览器爬虫
在现代网络爬虫实践中,动态网页加载和反爬虫机制增加了数据采集的难度。采用无头浏览器技术(如Selenium与ChromeDriver)可有效模拟用户行为、执行JavaScript,获取动态内容。通过设置代理IP、伪装User-Agent和处理Cookies,提升爬虫隐蔽性和稳定性。该方案适用于电商价格监控、社交媒体数据采集和招聘信息抓取等场景,实现更高效的数据获取。
867 2
深度解析:使用ChromeDriver和webdriver_manager实现无头浏览器爬虫
|
移动开发 JavaScript 前端开发
一些处理浏览器兼容性问题的JavaScript库
这些库在处理浏览器兼容性问题方面都有着各自的特点和优势,可以根据具体的需求和项目情况选择合适的库来使用,从而提高代码的兼容性和稳定性,为用户提供更好的体验。同时,随着浏览器技术的不断发展,还需要持续关注和学习新的兼容性解决方案。
393 58
|
算法 开发者
Moment.js库是如何处理不同浏览器的时间戳格式差异的?
总的来说,Moment.js 通过一系列的技术手段和策略,有效地处理了不同浏览器的时间戳格式差异,为开发者提供了一个稳定、可靠且易于使用的时间处理工具。
350 57

推荐镜像

更多