为什么ConcurrentHashMap是弱一致的

简介: 本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识。happens-before相关内容参见:JLS §17.4.5. Happens-before Order、深入理解Java内存模型以及Happens before;ConcurrentHashMap的详细介绍以及底层原理见深入分析ConcurrentHashMap。本文将从ConcurrentHashMap的get,clear,iterator(entrySet、keySet、values方法)三个方法来分析它们的弱一致问题。

本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识。happens-before相关内容参见:JLS §17.4.5. Happens-before Order深入理解Java内存模型以及Happens before;ConcurrentHashMap的详细介绍以及底层原理见深入分析ConcurrentHashMap。本文将从ConcurrentHashMap的get,clear,iterator(entrySet、keySet、values方法)三个方法来分析它们的弱一致问题。


ConcurrentHashMap#get

get方法是弱一致的,是什么含义?可能你期望往ConcurrentHashMap底层数据结构中加入一个元素后,立马能对get可见,但ConcurrentHashMap并不能如你所愿。换句话说,put操作将一个元素加入到底层数据结构后,get可能在某段时间内还看不到这个元素,若不考虑内存模型,单从代码逻辑上来看,却是应该可以看得到的。


下面将结合代码和java内存模型相关内容来分析下put/get方法(本文中所有ConcurrentHashMap相关的代码均来自hotspot1.6.0_18)。put方法我们只需关注Segment#put,get方法只需关注Segment#get,在继续之前,先要说明一下Segment里有两个volatile变量:counttable;HashEntry里有一个volatile变量:value

Segment#put

V put(K key, int hash, V value, boolean onlyIfAbsent) {

   lock();

   try {

       int c = count;

       if (c++ > threshold) // ensure capacity

           rehash();

       HashEntry<K,V>[] tab = table;

       intindex = hash & (tab.length - 1);

       HashEntry<K,V> first = tab[index];

       HashEntry<K,V> e = first;

       while (e != null && (e.hash != hash || !key.equals(e.key)))

           e = e.next;

       V oldValue;

       if (e != null) {

           oldValue = e.value;

           if (!onlyIfAbsent)

               e.value = value;

       }

       else {

           oldValue = null;

           ++modCount;

           tab[index] = new HashEntry<K,V>(key, hash, first, value);

           count = c; // write-volatile

       }

       return oldValue;

   } finally {

       unlock();

   }

}

Segment#get

V get(Objectkey, int hash) {

   if (count != 0) { // read-volatile

       HashEntry<K,V> e = getFirst(hash);

       while (e != null) {

           if (e.hash == hash && key.equals(e.key)) {

               V v = e.value;

               if (v != null)

                   return v;

               returnreadValueUnderLock(e); // recheck

           }

           e = e.next;

       }

   }

   returnnull;

}

我们如何确定线程1放入某个变量的值是否对线程2可见?文章开头提到的JLS链接中有说到,当a hb c时,a对c可见,那么我们接下来我们只要寻找put和get之间所有可能的执行轨迹上的hb关系。要找出hb关系,我们需要先找出与hb相关的Action。为方便,这里将两段代码放到了一张图片上。

image.png

可以注意到,同一个Segment实例中的put操作是加了锁的,而对应的get却没有。根据hb关系中的线程间Action类别,可以从上图中找出这些Action,主要是volatile读写和加解锁,也就是图中画了横线的那些。


put操作可以分为两种情况,一是key已经存在,修改对应的value;二是key不存在,将一个新的Entry加入底层数据结构。


key已经存在的情况比较简单,即if (e != null)部分,前面已经说过HashEntry的value是个volatile变量,当线程1给value赋值后,会立马对执行get的线程2可见,而不用等到put方法结束。


key不存在的情况稍微复杂一些,新加一个Entry的逻辑在else中。那么将new HashEntry赋值给tab[index]是否能立刻对执行get的线程可见呢?我们只需分析写tab[index]与读取tab[index]之间是否有hb关系即可。

假设执行put的线程与执行get的线程的轨迹是这样的

执行put的线程 执行get的线程
⑧tab[index] = new HashEntry\<K,V>(key, hash, first, value)
②count = c
③if (count != 0)
⑨HashEntry e = getFirst(hash);

tab变量是一个普通的变量,虽然给它赋值的是volatile的table。另外,虽然引用类型(数组类型)的变量table是volatile的,但table中的元素不是volatile的,因此⑧只是一个普通的写操作;count变量是volatile的,因此②是一个volatile写;③很显然是一个volatile读;⑨中getFirst方法中读取了table,因此包含一个volatile读。


根据Synchronization Order,对同一个volatile变量,有volatile写 hb volatile读。在这个执行轨迹中,时间上②在③之前发生,且②是写count,③是读count,都是针对同一个volatile变量count,因此有② hb ③;又因为⑧和②是同一个线程中的,③和⑨是同一个线程中的,根据Program Order,有⑧ hb ②,③ hb ⑨。目前我们有了三组关系了⑧ hb ②,② hb ③,③ hb ⑨,再根据hb关系是可传递的(即若有x hb y且y hb z,可得出x hb z),可以得出⑧ hb ⑨。因此,如果按照上述执行轨迹,⑧中写入的数组元素对⑨中的读取操作是可见的。


再考虑这样一个执行轨迹:

|执行put的线程|执行get的线程|

|-|-|

|⑧tab[index] = new HashEntry\<K,V>(key, hash, first, value)||

||③if (count != 0)|

②count = c||

||⑨HashEntry e = getFirst(hash);|


这里只是变换了下执行顺序。每条语句的volatile读写含义同上,但它们之间的hb关系却改变了。Program Order是我们一直拥有的,即我们有⑧ hb ②,③ hb ⑨。但这次对volatile的count的读时间上发生在对count的写之前,我们无法得出② hb ⑨这层关系了。因此,通过count变量,在这个轨迹上是无法得出⑧ hb ⑨的。那么,存不存在其它可替换关系,让我们仍能得出⑧ hb ⑨呢?


我们要找的是,在⑧之后有一条语句或指令x,在⑨之前有一条语句或指令y,存在x hb y。这样我们可以有⑧ hb x,x hb y, y hb ⑨。就让我们来找一下是否存在这样的x和y。图中的⑤、⑥、⑦、①存在volatile读写,但是它们在⑧之前,因此对确立⑧ hb ⑨这个关系没有用处;同理,④在⑨之后,我们要找的是⑨之前的,因此也对这个问题无益。前面已经分析过了②,③之间没法确立hb关系。


在⑧之后,我们发现一个unlock操作,如果能在⑨之前找到一个lock操作,那么我们要找的x就是unlock,要找的y就是lock,因为Synchronization Order中有unlock hb lock的关系。但是,很不幸运,⑨之前没有lock操作。因此,对于这样的轨迹,是没有⑧ hb

⑨关系的,也就是说,如果某个Segment实例中的put将一个Entry加入到了table中,在未执行count赋值操作之前有另一个线程执行了同一个Segment实例中的get,来获取这个刚加入的Entry中的value,那么是有可能取不到的!

此外,如果getFirst(hash)先执行,tab[index] = new HashEntry\<K,V>(key, hash, first, value)后执行,那么,这个get操作也是看不到put的结果的。


正是因为get操作几乎所有时候都是一个无锁操作(get中有一个readValueUnderLock调用,不过这句执行到的几率极小),使得同一个Segment实例上的put和get可以同时进行,这就是get操作是弱一致的根本原因。Java

API中对此有一句简单的描述:

Retrievals reflect the results of the most recently completed

update operations holding upon their onset.

也就是说API上保证get操作一定能看到已完成的put操作。已完成的put操作肯定在get读取count之前对count做了写入操作。因此,也就是我们第一个轨迹分析的情况。

ConcurrentHashMap#clear

clear方法很简单,看下代码即知。

public void clear() {

   for (int i = 0; i < segments.length; ++i)

       segments[i].clear();

}

因为没有全局的锁,在清除完一个segments之后,正在清理下一个segments的时候,已经清理segments可能又被加入了数据,因此clear返回的时候,ConcurrentHashMap中是可能存在数据的。因此,clear方法是弱一致的。

ConcurrentHashMap中的迭代器

ConcurrentHashMap中的迭代器主要包括entrySet、keySet、values方法。它们大同小异,这里选择entrySet解释。当我们调用entrySet返回值的iterator方法时,返回的是EntryIterator,在EntryIterator上调用next方法时,最终实际调用到了HashIterator.advance()方法,看下这个方法:

finalvoid advance() {

   if (nextEntry != null && (nextEntry = nextEntry.next) != null)

       return;

   while (nextTableIndex >= 0) {

       if ( (nextEntry = currentTable[nextTableIndex--]) != null)

           return;

   }

   while (nextSegmentIndex >= 0) {

       Segment<K,V> seg = segments[nextSegmentIndex--];

       if (seg.count != 0) {

           currentTable = seg.table;

           for (int j = currentTable.length - 1; j >= 0; --j) {

               if ( (nextEntry = currentTable[j]) != null) {

                   nextTableIndex = j - 1;

                   return;

               }

           }

       }

   }

}

这个方法在遍历底层数组。在遍历过程中,如果已经遍历的数组上的内容变化了,迭代器不会抛出ConcurrentModificationException异常。如果未遍历的数组上的内容发生了变化,则有可能反映到迭代过程中。这就是ConcurrentHashMap迭代器弱一致的表现。

总结

ConcurrentHashMap的弱一致性主要是为了提升效率,是一致性与效率之间的一种权衡。要成为强一致性,就得到处使用锁,甚至是全局锁,这就与Hashtable和同步的HashMap一样了。

相关文章
|
缓存 NoSQL Java
面试官:如何保证本地缓存的一致性?
面试官:如何保证本地缓存的一致性?
2811 1
|
缓存 API Android开发
Android Kotlin之Flow数据流
`Flow`是`google`官方提供的一套基于`kotlin`协程的响应式编程模型,它与`RxJava`的使用类似,但相比之下`Flow`使用起来更简单,另外`Flow`作用在协程内,可以与协程的生命周期绑定,当协程取消时,`Flow`也会被取消,避免了内存泄漏风险。
1624 1
|
SQL 缓存 关系型数据库
MySQL调优之关联查询、子查询优化
MySQL调优之关联查询、子查询优化
1663 0
|
8月前
|
机器学习/深度学习 编解码 人工智能
基于昇腾适配数据驱动的全球天气预报模型Fuxi
Fuxi是由复旦大学的研究人员开发的一个基于数据驱动的全球天气预报模型,主要由Cube Embedding、U-Transformer和全连接层构成。Fuxi摒弃了传统复杂的微分方程,转而通过多阶段机器学习架构,可提供15天的全球预报。时间分辨率为6小时,空间分辨率为0.25°。
|
缓存 监控 安全
Spring AOP 详细深入讲解+代码示例
Spring AOP(Aspect-Oriented Programming)是Spring框架提供的一种面向切面编程的技术。它通过将横切关注点(例如日志记录、事务管理、安全性检查等)从主业务逻辑代码中分离出来,以模块化的方式实现对这些关注点的管理和重用。 在Spring AOP中,切面(Aspect)是一个模块化的关注点,它可以跨越多个对象,例如日志记录、事务管理等。切面通过定义切点(Pointcut)和增强(Advice)来介入目标对象的方法执行过程。 切点是一个表达式,用于匹配目标对象的一组方法,在这些方法执行时切面会被触发。增强则定义了切面在目标对象方法执行前、执行后或抛出异常时所
17682 4
|
域名解析 存储 网络协议
你知道CDN是什么吗?本文带你搞明白CDN
你知道CDN是什么吗?本文带你搞明白CDN
5893 1
|
消息中间件 存储 Java
RocketMQ文件刷盘机制深度解析与Java模拟实现
【11月更文挑战第22天】在现代分布式系统中,消息队列(Message Queue, MQ)作为一种重要的中间件,扮演着连接不同服务、实现异步通信和消息解耦的关键角色。Apache RocketMQ作为一款高性能的分布式消息中间件,广泛应用于实时数据流处理、日志流处理等场景。为了保证消息的可靠性,RocketMQ引入了一种称为“刷盘”的机制,将消息从内存写入到磁盘中,确保消息持久化。本文将从底层原理、业务场景、概念、功能点等方面深入解析RocketMQ的文件刷盘机制,并使用Java模拟实现类似的功能。
379 3
|
Java 编译器 Spring
面试突击78:@Autowired 和 @Resource 有什么区别?
面试突击78:@Autowired 和 @Resource 有什么区别?
17005 6
|
安全 Java 程序员
ArrayList vs Vector:一场线程安全与性能优化的世纪之争!
在 Java 面试中,ArrayList 和 Vector 是高频考点,但很多人容易混淆。本文通过10分钟深入解析它们的区别,帮助你快速掌握性能、线程安全性、扩容机制等核心知识,让你轻松应对面试题目,提升自信!
350 18
|
存储 NoSQL 算法
Redis内存回收
Redis 基于内存存储,性能卓越,但单节点内存不宜过大,以免影响持久化或主从同步。可通过配置 `maxmemory` 限制最大内存。内存达到上限时,Redis采用两种策略:内存过期策略和内存淘汰策略。过期策略包括惰性删除和周期删除,后者分为 SLOW 和 FAST 模式。内存淘汰策略有八种,如 LRU、LFU 和随机淘汰等,用于在内存不足时释放空间。官方推荐使用 LFU 算法。
276 2
Redis内存回收