AI公开课:19.04.04李航—字节跳动AILab总监《深度学习与自然语言处理:评析与展望》课堂笔记以及个人感悟

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: AI公开课:19.04.04李航—字节跳动AILab总监《深度学习与自然语言处理:评析与展望》课堂笔记以及个人感悟

1、关于李航教授

     李航,字节跳动科技有限公司人工智能实验室总监,北京大学、南京大学客座教授,IEEE 会士,ACM 杰出科学家,CCF 高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。1990年至2001年就职于日本NEC 公司中央研究所,任研究员,2001年至2012年就职于微软亚洲研究院,任高级研究员与主任研究员。2012年至2017年就职于华为技术有限公司诺亚方舟实验室,任首席科学家、主任。曾出版过三部学术专著,并在顶级国际学术会议和顶级国际学术期刊上发表过120多篇学术论文。

     研究方向包括信息检索、自然语言处理、统计机器学习及数据挖掘。他一直活跃在相关学术领域,曽出版过三部学术专著,并在顶级国际学术会议和国际学术期刊上发表过上百篇学术论文,拥有40项授权美国专利。


2、关于字节跳动

     北京字节跳动科技有限公司成立于2012年,是最早将人工智能应用于移动互联网场景的科技企业之一。其独立研发的“今日头条”客户端,通过海量信息采集、深度数据挖掘和用户行为分析,为用户智能推荐个性化信息,从而开创了一种全新的新闻阅读模式。

     2012年3月,北京字节跳动科技有限公司成立。

     2012年8月,字节跳动旗舰产品今日头条1.0版本上线。

     2016年3月,字节跳动设立人工智能实验室。

     2018年8月8日,北京字节跳动科技有限公司已经启动新一轮股权融资,对该公司的估值最高或达750亿美元。

     2018年10月24日,字节跳动本轮Pre-IPO融资已经完成,投前估值达到750亿美元。


问答环节


小编正在使劲整理中……


雷鸣教授:

李航教授:

雷鸣教授:

李航教授:

雷鸣教授:

李航教授:

雷鸣教授:

李航教授:




现场PPT


小编正在使劲整理中……


文件图片已经丢失……






演讲PPT


小编正在使劲整理中……


文件图片已经丢失……


相关文章
|
23天前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
70 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
23天前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
44 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
【10月更文挑战第7天】本文将深入探讨人工智能在自然语言处理领域的最新进展,揭示AI技术如何改变我们与机器的互动方式,并展示通过实际代码示例实现的具体应用。
32 1
|
25天前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
47 0
|
23天前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
32 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
23天前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
57 1
深度学习环境搭建笔记(一):detectron2安装过程
|
23天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
111 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
23天前
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
46 1
|
25天前
|
机器学习/深度学习 vr&ar
深度学习笔记(十):深度学习评估指标
关于深度学习评估指标的全面介绍,涵盖了专业术语解释、一级和二级指标,以及各种深度学习模型的性能评估方法。
34 0
深度学习笔记(十):深度学习评估指标
|
25天前
|
机器学习/深度学习 Python
深度学习笔记(九):神经网络剪枝(Neural Network Pruning)详细介绍
神经网络剪枝是一种通过移除不重要的权重来减小模型大小并提高效率的技术,同时尽量保持模型性能。
43 0
深度学习笔记(九):神经网络剪枝(Neural Network Pruning)详细介绍

热门文章

最新文章