RL之Q Learning:利用强化学习之Q Learning实现走迷宫—训练智能体走到迷宫(复杂迷宫)的宝藏位置

简介: RL之Q Learning:利用强化学习之Q Learning实现走迷宫—训练智能体走到迷宫(复杂迷宫)的宝藏位置

输出结果

image.png


设计思路

image.png


实现代码

from __future__ import print_function

import numpy as np

import time

from env import Env

from reprint import output

EPSILON = 0.1

ALPHA = 0.1

GAMMA = 0.9

MAX_STEP = 30

np.random.seed(0)

def epsilon_greedy(Q, state):

   if (np.random.uniform() > 1 - EPSILON) or ((Q[state, :] == 0).all()):

       action = np.random.randint(0, 4)  # 0~3

   else:

       action = Q[state, :].argmax()

   return action

e = Env()

Q = np.zeros((e.state_num, 4))

with output(output_type="list", initial_len=len(e.map), interval=0) as output_list:

   for i in range(100):

       e = Env()

       while (e.is_end is False) and (e.step < MAX_STEP):

           action = epsilon_greedy(Q, e.present_state)

           state = e.present_state

           reward = e.interact(action)

           new_state = e.present_state

           Q[state, action] = (1 - ALPHA) * Q[state, action] + \

               ALPHA * (reward + GAMMA * Q[new_state, :].max())

           e.print_map_with_reprint(output_list)

           time.sleep(0.1)

       for line_num in range(len(e.map)):

           if line_num == 0:

               output_list[0] = 'Episode:{} Total Step:{}, Total Reward:{}'.format(i, e.step, e.total_reward)

           else:

               output_list[line_num] = ''

       time.sleep(2)




相关文章
|
2月前
|
机器学习/深度学习 算法 决策智能
北大领衔,多智能体强化学习研究登上Nature子刊
北京大学研究团队近日在《Nature》子刊上发布了一篇关于多智能体强化学习(MARL)的论文,提出了一种高效且可扩展的MARL框架,旨在解决大规模网络控制系统中的决策问题。该框架实现了智能体间的局部通信,减少了通信成本与计算复杂度,并在交通、电力及疫情防控等多个真实场景实验中,显著提升了决策性能。论文链接:https://www.nature.com/articles/s42256-024-00879-7。尽管该研究仍存局限,但为MARL的应用提供了新思路。
59 2
|
1月前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
118 4
|
2月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
168 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
103 9
|
2月前
|
机器学习/深度学习 人工智能 安全
北大领衔,多智能体强化学习研究登上Nature子刊
【10月更文挑战第1天】近日,北京大学领导的研究团队在《Nature》子刊上发表了一篇关于多智能体强化学习的论文,提出了一种高效且可扩展的框架,解决了大规模网络控制系统中的决策问题。该框架通过局部通信避免了集中式和独立学习的缺点,在交通、电力等领域的实验中展现了卓越性能。然而,其在更复杂系统中的效果及计算复杂度仍需进一步验证。论文链接:https://www.nature.com/articles/s42256-024-00879-7。
46 3
|
4月前
|
人工智能 自然语言处理 算法
可自主进化的Agent?首个端到端智能体符号化训练框架开源了
【8月更文挑战第13天】近年来,AI领域在构建能自主完成复杂任务的智能体方面取得重大突破。这些智能体通常基于大型语言模型,可通过学习适应环境。为简化设计流程,AIWaves Inc.提出智能体符号化学习框架,使智能体能在数据中心模式下自我优化,以推进通向通用人工智能的道路。该框架将智能体视作符号网络,利用提示、工具及其组合方式定义可学习的权重,并采用自然语言模拟反向传播和梯度下降等学习过程,指导智能体的自我改进。实验显示,此框架能有效促进智能体的自主进化。尽管如此,该框架仍面临高质量提示设计及计算资源需求高等挑战。论文详情参见:https://arxiv.org/pdf/2406.18532。
182 58
|
4月前
|
机器学习/深度学习 存储 定位技术
强化学习Agent系列(一)——PyGame游戏编程,Python 贪吃蛇制作实战教学
本文是关于使用Pygame库开发Python贪吃蛇游戏的实战教学,介绍了Pygame的基本使用、窗口初始化、事件处理、键盘控制移动、以及实现游戏逻辑和对象交互的方法。
|
4月前
|
机器学习/深度学习 人工智能 缓存
AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战
AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战
632 0
|
4月前
|
人工智能 物联网 异构计算
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
299 0
|
5月前
|
机器学习/深度学习 算法 Python
强化学习(Reinforcement Learning, RL)** 是一种机器学习技术,其中智能体(Agent)通过与环境(Environment)交互来学习如何执行决策以最大化累积奖励。
强化学习(Reinforcement Learning, RL)** 是一种机器学习技术,其中智能体(Agent)通过与环境(Environment)交互来学习如何执行决策以最大化累积奖励。