投资银行如何利用大数据预测行情

简介:

传统的华尔街选股者试图关注影响其投资的一些关键因素,诸如债券收益率、日元汇率,又或是石油价格和月度消费支出数据。


但一些新型的对冲基金公司认为,通过收集全球尽可能多的数据——从沃尔玛停车场占位情况的卫星图像到炼油厂释放出的热量信号,并且快速的投注以利用隐藏在这些数据集之间的关系,他们能够打败这些传统基金经理。


该方法体现了近来的一种投资转变,更多的依靠大数据和算法在竞争对手间赢得比较优势。首尔一家名为Jumpgate科技的公司宣称,他们正试图消除人为参与,放手让机器学习技术自由探索和利用世界日益增长的数据宝库。


那么对冲基金的人类创始人又将是何种角色呢?设计一个好的系统,让它可以利用大量的数据点,并收集更多的数据流供给该项目。Jumpgate,诚然规模不大,却已跻身于所谓的金融科技公司行列,他们试图将硅谷的科技创新融合进深谙金融市场的华尔街。


Jumpgate公司的董事长兼首席执行官Kristof Olesch自述其自13岁起就开始编程,16岁便开始在证券市场投资。目前该公司已经招募了一些工程类的博士毕业生。


一家更具规模的公司,总部设在纽约的二西格玛投资有限责任公司(TwoSigma Investments LLC),荣获本周《华尔街日报》头版的主角,编译了一款程序,让机器获取收益报告、天气预告和Twitter上的海量信息。


为了分配其价值240亿美元的管理资产,two sigma公司的策略是在进行一项交易前,基于这些数据产生不同的投资模型,然后用一种算法让模型之间彼此对抗,最终择优选取出最佳投资策略。


这些投资者们说,这是第一次,全球的计算机能够存储和学习从世界各地收集到的信息,这些信息来源涵盖超级计算机、智能手机,以及嵌入日常家居用品的小型处理器。


大部分的数据点可能帮不上股票投资者什么忙。有时,一个神秘的数据点只是一个神秘的数据点而已。


但是Olesch先生确信它远不止表面看来那么简单。传统的投资者只能籍由与公司管理层的会议、细致阅读财务报表和渠道检查来获得信息。而他则希望通过利用电脑的力量,能获得大规模的信息化优势。


Olesch先生指出:“柯达的终结是由于技术革新,而现在资产管理者的工作方式也面临同样的境况。” 他现在已有大约3000个数据流,他希望很快能够增加到约10000个数据流。


举个例子:商店停车场的商业卫星图像不但可以提供诸如商场交通等信息,也可以透露包括驾驶习惯、天气类型及其它众多人类基金经理无法预测的指标。


同样的,观察一个炼油厂的热信号能够推导出该厂设备是否满负荷运转。


“现在人们仅仅处理使用了全球1%的数据,” Olesch先生说道:“我们希望得到这些数据,而不是等着别人告诉我们数据处理已饱和。”


正因如此,现在很多公司专注于Olesch先生所说的“技术侦察”——想方设法接入各种数据流,无论来自开放数据还是通过与那些可能坐拥大量潜在价值数据的公司或机构合作而获得的数据。


到目前为止,Jumpgate这家在首尔成立,却在新加坡注册的公司,认为该战略行之有效。尽管和Two Sigma这样的大公司相比,它的基金规模还很小,但是Olesch先生表示其基金在头三个月中均业绩良好,即使在其基准——标普500指数都不景气的情况下,它仍保持每个月都是正收益。


来源:

http://blogs.wsj.com/korearealtime/2015/04/03/seoul-based-investors-turn-to-big-data-in-search-of-big-returns/?KEYWORDS=big%20data


【译者简介】

有意联系译者,请给“大数据文摘”后台留言,附自我介绍及微信ID,谢谢!


吴涤,本科毕业于上海外国语大学法语系,硕士毕业于法国巴黎二大( UniversitéPanthéon-Assas),主修统计与金融工程专业。目前旅居巴黎,就职于法国第二大银行集团,担任决策分析工程师,对于金融领域的数据挖掘、决策建模与商业分析有扎实的理论基础与丰富的实践经验。对于大数据的发展,尤其在金融领域的应用有浓厚的兴趣。

2014年底正式加入大数据文摘海外翻译志愿者行列,希望在新的一年带领大家近距离观察法国,乃至欧洲在大数据时代的动向。衷心祝愿文摘成为读者最喜爱的大数据知识信息分享平台。



原文发布时间为:2015-04-29


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
大数据 数据挖掘 定位技术
买房不是拍脑袋:大数据教你优化房地产投资策略
买房不是拍脑袋:大数据教你优化房地产投资策略
167 2
|
4月前
|
机器学习/深度学习 自然语言处理 监控
大数据如何影响新兴市场投资决策?——数据才是真正的风向标
大数据如何影响新兴市场投资决策?——数据才是真正的风向标
124 3
|
大数据
互联网时代,一份投资理财大数据报告能改变什么?
互联网时代,一份投资理财大数据报告能改变什么?
283 0
互联网时代,一份投资理财大数据报告能改变什么?
|
机器学习/深度学习 存储 人工智能
2017年能源行业在大数据和人工智能领域的投资增长10倍
2017年能源行业在大数据和人工智能领域的投资增长10倍
255 0
|
人工智能 大数据
从RPA获得资本市场认可,看AI大数据投资
2019年继AA拿了财神爷愿景的钱后,5月UiPath也融了5个多亿美元,估值上了70亿美金,国内的弘玑、艺赛旗、来也、云扩等都渐渐崭露头角。(我先说好这类公司我一个也没看过,以下都是信口胡说,看到这里该点退出就点不要犹豫。
|
存储 消息中间件 传感器
大数据公司“北京涛思数据”获得Pre A轮融资,永辉瑞金和温青投资参投
完成此轮融资后,涛思数据将在市场宣传及开拓、尤其是美国为主的海外市场开拓方面加速,凭借其强大的产品性能优势迅速在物联网、车联网等领域占领市场。
380 0
|
算法 大数据 数据挖掘
大数据未来发展行情之是否值得转职学习
前言 有很多人想转行做大数据,但是很少成功,有很多学校陆续开大数据相关专业,大数据为什么这么火,大数据的未来又将何去何从呢?以至于现在普通的大数据开发师的工资能达到2w+的水平,请持续关注小编,每天不定时发布大数据最新消息,学习方法,就业形式 大数据背景        据职业社交平台LinkedIn发布的《2017年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。
1348 0