美政府用大数据解析学生贷款

简介:

导读:美国的信息系统可谓非常发达,但是你能想象吗,管理者4000万学生贷款信息的教育部系统十分陈旧,系统无法有效的归纳出美国学生贷款的具体债务情况,无法预测在降低还款数额后,还有多少人需要还款。为了解决此问题,教育部要研发一套信息系统,而且要几年的时间才能建成。


由于数据收集系统过时陈旧,奥巴马政府顶着1.1万亿美元的学生贷款,却无法获得债务的基本资料。而这严重阻碍了政府去帮助那些倍受压力的债务人,也无法及时有效地保护纳税人。


问题的焦点在于教育部门的电脑系统。虽然这个系统保存了大约四千万个学生贷款资料,却无法及时有效地归纳出每个学生贷款的具体债务情况。比如说,在降低还款数额后,债务人是否仍旧拖欠学生贷款。与此同时,在处理新增贷款时,这个系统也缺乏分析数据的能力。官员们表示,他们不希望因为这个系统从而妨碍联邦政府对现有学生的经济援助.


上个月,当白宫发现豁免联邦学生贷款的成本预计高达220亿美元时,这些潜在问题终于浮出水面。于是,这次财政修订成了年度程序的一部分,财务人员重新估算了联邦贷款项目的成本和收益。


为了防止类似情况再次发生,以及更准确地计算学生贷款的长期成本,政府希望从教育部获得更加及时详尽的数据。在奥巴马总统的2016年预算中,已经拨出1千6百万美元用于建造一个更加现代化的数据系统。


教育部发言人Denise Horn表示,整个系统正处于研发期,等到项目完成,这个系统将会“更加及时,准确,一致地分析联邦助学金的数据。” 她同时表示,这个系统将会在未来几年分期完成。


财务部副部长SarahBloom Raskin对于缺乏有效信息表示担忧。她在去年某次公开讲话中指出: “考虑到学生贷款债务人的数量,未偿还学生贷款的总额,以及债务人如何在还款期内偿还债务, 财务部将致力于开展有效的调研以获取对这个群体的有用数据。


目前,由于缺乏相关数据,政府在一些政策上无法决断。比如说, 政府针对没有偿还能力的借贷人设计了一个“基于债务人收入”的偿还计划, 这个项目允许降低贷款人每个月的还款金额,以及在某些特殊情况下的债务豁免。然而,政府却不知道具体有多少人加入了这个项目。更糟的是,对于那些已经参与项目,却依旧拖欠偿还的债务人,政府仍然无法给出一个确切的数字。为了得到参与项目的人数,以及跟踪他们的还款情况,政府开展规划,而这一举措某种程度上推动了上个月公布的220亿美元修订案。


官员们纷纷表示他们需要数据来回答一个关键问题: 为什么美国人一直拖欠他们的学生贷款? 甚至在当下劳动力市场和美国经济都开始复苏的时候?换言之,在他们经济负担相对较小的时候?


“要得到满足我们需要的学生贷款数据, 还有很长的一段路要走.”我们不但需要评估方案的有效性,还需要帮助陷入还款困境的贷款人,RohitChopra,联邦消费者金融保护局助学贷款监察员如是说。“鉴于学生贷款数量爆发式的增长和学生贷款违约的增加, 提升我们对这个群体的了解是至关重要的。只有这样, 我们才不会重蹈覆辙,再犯一些导致当年次贷危机的错误.”


这些问题反映了政府自2010年来作为全国学生贷款的主要借款人这一新角色所遭遇的困难。在2010之前,学生贷款主要借贷对象是私营机构,比如美国最大学生贷款供应商Sallie Mae(SLM Corp.’s Sallie Mae),并且由政府提供担保。


一些教育专家认为,政府还没有做好充分的准备来管理和评估这项已经由私营机构管理了几十年的领域。


“如果你没有足够的信息去执行这个项目并且实现盈利,这里面的赤字风险是巨大的,” 威斯康星 –麦迪逊大学联邦教育政策教授Sara Goldrick-Rad说。“坦白讲,这是个相当复杂的任务,那么多精明的银行已经做了这么久,而政府里的这帮人对此却不是那么在行。


即使有新的数据系统使财政部更好地了解政府的贷款组合信息,而非政府的研究人员依旧可能在相关问题上留下疑问.


教育部最近发表了季度报告,阐述了政府为每个大学支出的学生贷款和赠款。教育部还发布了各个学校贷款违约率的年度报告。但是有关那些领取和偿还贷款的学生,研究人员还想要有更为细化的数据,他们认为这能更好的为政策决议提供支持。


但是出于隐私保护,教育部一直不愿意将这些报告的具体内容公诸于众。


因为教育部没有 “创建一个真正强大的机制,既能保护个人身份信息的安全,同时又让合法的研究人员对该信息进行研究。” 美国研究所管理研究员,前教育部高级官员Thomas Weko说。


研究人员将无法直接通过新研发的学生贷款数据系统进行分析,与此同时,对于教育部是否公开匿名数据,仍然有待商榷。


教育部官员Horn女士说:“我们将会继续寻找契机为相关外部机构提供更多可用于大规模的研究的数据,同时我们也能依据联邦法规和章程保护我们客户的隐私。


原文发布时间为:2015-03-31

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
7月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
7月前
|
人工智能 分布式计算 DataWorks
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
阿里云ODPS技术栈通过MaxCompute、Object Table与MaxFrame等核心组件,实现了多模态数据的高效处理与智能分析。该架构支持结构化与非结构化数据的统一管理,并深度融合AI能力,显著降低了分布式计算门槛,推动企业数字化转型。未来,其在智慧城市、数字医疗、智能制造等领域具有广泛应用前景。
622 6
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
|
9月前
|
人工智能 分布式计算 大数据
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
|
存储 搜索推荐 大数据
数据大爆炸:解析大数据的起源及其对未来的启示
数据大爆炸:解析大数据的起源及其对未来的启示
793 15
数据大爆炸:解析大数据的起源及其对未来的启示
|
存储 分布式计算 大数据
大数据揭秘:从数据湖到数据仓库的全面解析
大数据揭秘:从数据湖到数据仓库的全面解析
393 19
|
机器学习/深度学习 算法 大数据
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
404 44
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
|
机器学习/深度学习 搜索推荐 大数据
深度解析:如何通过精妙的特征工程与创新模型结构大幅提升推荐系统中的召回率,带你一步步攻克大数据检索难题
【10月更文挑战第2天】在处理大规模数据集的推荐系统项目时,提高检索模型的召回率成为关键挑战。本文分享了通过改进特征工程(如加入用户活跃时段和物品相似度)和优化模型结构(引入注意力机制)来提升召回率的具体策略与实现代码。严格的A/B测试验证了新模型的有效性,为改善用户体验奠定了基础。这次实践加深了对特征工程与模型优化的理解,并为未来的技术探索提供了方向。
628 2
深度解析:如何通过精妙的特征工程与创新模型结构大幅提升推荐系统中的召回率,带你一步步攻克大数据检索难题
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
1032 1
|
存储 机器学习/深度学习 数据采集
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
379 0

推荐镜像

更多
  • DNS