[译]大数据将颠覆传统医疗的科学方法

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

斯坦福大学将于2015年5月20到22日举办一个生物医学领域的大数据会议,该会议针对各大高校、医院、政府部门和机构的医学研究人员,旨在鼓励合作、应对挑战以及建立在医疗保健领域使用大数据的可行步骤。


这里存在着很多机遇。无论是通过能处理海量数据的科学计算项目(mega-scientificcomputing projects),还是通过非正式的方法看待数据以及用全新的方法分析数据以获得过去无法获取的结果,医疗界正向利用大数据和分析法解决临床挑战进军。


举个例子,2011年的斯坦福Lucile Packard儿童医院,一位来自内华达州里诺的女孩被用直升机送到该医院的加护病房(ICU)。她患有狼疮,一种攻击人体健康组织并能导致永久性肾损伤的疾病。一个多学科医生团队不得不在使用凝结剂和复合手术的风险间权衡,凝结剂能够稀释血液以防止血液结块,复合手术会导致中风或者器官内出血。为此,医生们需要数据!


一位叫Jennifer Frankovich的年青医师诉诸于使用狼疮患儿数据库,她曾参与建立该数据库。作为数据库工作的一部分,需要将图表数字化并使数据可通过关键字来检索。通过搜索数据库,Frankovich医生能够查阅每位来院的狼疮患儿,从而了解他们中出现血凝现象的人数,以及导致危险的因素。据此,她可以计算出使用抗凝血剂的风险能否佐证小女孩出现血液凝块的风险。计算结果表明,值得冒这个险:使用了抗凝血剂后,小女孩的病情出现了好转迹象。


斯坦福医学院的企业家和儿科副教授Atul Butte,将Frankovich医生的工作比做发生在医疗界的“剧变”。Butt表示,“这件事的意义是,科学方法(scientificmethod)正向淘汰自身的方向发展”。


这一科学方法已存续几十年且至今仍被医疗界沿用,它由来自各医学领域的卓越医疗专家组成合作团队,他们互相商讨并分享各自在治疗方案和病人康复成果方面的大量经验。然而,历尽时间的洗礼和乱世动荡,很多记录了传世医疗方法的医学文献和实验证据会不可避免地丢失。这恰好发生在斯坦福医院这个狼疮病例中,这也给了Frankovich一个机会,用来自数据的深入信息填补了这一空白。

故事就此结束了吗?还差一点儿。

医院的管理层仍然认为,对于紧急病例,相比于查找过往成功案例的医疗数据,相信医师团队的集体智慧更加安全稳妥。在今年一月份接受NPR采访时,Frankovich医生坦言, “分析数据是一个复杂的工作,需要特定的专业知识和技能。试想,假若搜索引擎有程序错误,亦或档案被错误的转录,后果将会如何?真的有太多地方会出现错误… …。这将需要一个系统来解析数据,而这样的系统是我们还尚未拥有。”

回到今年春天即将在斯坦福召开的大数据会议。会议通告中写到:“在从大数据的大规模整合及分析中攫取价值这方面,其它行业已经取得了极大成功,而医疗健康行业才刚起步(沾湿了脚丫,getting its feetwet)。是的,医疗健康的提供者(如医疗机构等)和付费者(如病人等)正日益增加在分析能力上的投入,以更好地理解不断变化的健康医疗环境,但这还只是处于初级阶段。”

确实如此,但是在诸如克利夫兰临床中心(ClevelandClinic)这样的医疗健康机构中,医生和医学实践者们已经在利用大数据和分析法来诊断病情和实施治疗。当跨学科医生团队评估病人时,数据分析结果已然进入了他们的讨论之中。并且,尽管医疗健康数据的质量和整合问题将持续存在,无容置疑的是,重新定义传统科学方法已初现端倪。

.

原文发布时间为:2015-03-06

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
机器学习/深度学习 分布式计算 DataWorks
MaxCompute产品使用合集之MaxCompute读取外部表的速度较慢,有什么方法来提升读取速度
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
20天前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
量子计算作为革命性的计算范式,凭借量子比特和量子门的独特优势,展现出在大数据处理中的巨大潜力。本文探讨了量子计算的基本原理、在大数据处理中的应用及面临的挑战与前景,展望了其在金融、医疗和物流等领域的广泛应用。
|
2月前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
6月前
|
机器学习/深度学习 搜索推荐 大数据
大数据在医疗健康领域的革新作用
【6月更文挑战第1天】大数据在医疗健康领域展现出巨大潜力,助力疾病预测、精准诊断和个性化治疗。通过分析医疗数据,预测风险、辅助诊断,并定制治疗方案。示例代码展示了使用LogisticRegression进行疾病预测。随着技术发展,大数据将为医疗健康带来革命性进步,保障人类健康。
132 1
|
3月前
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。
|
3月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
195 6
|
3月前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
7月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute产品使用合集之可以使用什么方法将MySQL的数据实时同步到MaxCompute
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
2月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
37 0
|
4月前
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
70 3