跳表介绍

简介: 详细介绍了跳表的原理及应用

  跳跃表(英文名:Skip List),于 1990 年 William Pugh 发明,是一个可以在有序元素中实现快速查询的数据结构,其插入,查找,删除操作的平均效率都为 $O(logn)$。
  跳跃表的整体性能可以和二叉查找树(AVL 树,红黑树等)相媲美,其在 Redis 和 LevelDB 中都有广泛的应用。
blockchain
  每个结点除了数据域,还有若干个指针指向下一个结点。
  整体上看,Skip List 就是带有层级结构的链表(结点都是排好序的),最下面一层(level 0)是所有结点组成的一个链表,依次往上,每一层也都是一个链表。不同的是,它们只包含一部分结点,并且越往上结点越少。仔细观察你会发现,通过增加层数,从当前结点可以直接访问更远的结点(这也就是 Skip List 的精髓所在),就像跳过去一样,所以取名叫 Skip List(跳跃表)。

过程分析

先来看下跳跃表的整体代码结构:

#define P 0.25
#define MAX_LEVEL 32

struct Node
{
    int key;
    Node ** forward;
    Node(int key = 0, int level = MAX_LEVEL)
    {
        this->key = key;
        forward = new Node*[level];
        memset(forward, 0, level * sizeof(Node*));
    }
};

class SkipList
{
private:
    Node * header;
    int level;
private:
    int random_level();
public:
    SkipList();
    ~SkipList();
    bool insert(int key);
    bool find(int key);
    bool erase(int key);
    void print();
};

2.1、插入

blockchain
首先,我们要找到 10 在每一层应该被插入的位置,因此需要一个临时数组 update[] 来记录位置信息。
其次,我们要确定结点 10 的层数(结点 9 的层数为 2,结点 12 的层数为 1)。

  理想的跳跃表结构是:第一层有全部的结点,第二层有 1 2 的结点,且是均匀间隔的,第三层有 1 4 的结点,且也是均匀间隔的...,那么整个表的层数就是 $logn$。每一次插入一个新结点时,最好的做法就是根据当前表的结构得到一个合适的层数,插入后可以让跳跃表尽量接近理想的结构,但这在实现上会非常困难。Pugh 的论文中提出的方法是根据概率随机为新结点生成一个层数,具体的算法如下:

  1. 给定一个概率 p(p 小于 1),产生一个 [0,1) 之间的随机数;
  2. 如果这个随机数小于 p,则层数加 1;
  3. 重复以上动作,直到随机数大于概率 p(或层数大于程序给定的最大层数限制)。

  虽然随机生成的层数会打破理想结构,但这种结构的期望复杂度依旧是 $O(logn)$,稍后文尾会给出证明。

最后,把结点 10 和它的前后结点连起来就行了。

int SkipList::random_level()
{
    int level = 1;

    while ((rand() & 0xffff) < (P * 0xffff) && level < MAX_LEVEL)
        level++;

    return level;
}

bool SkipList::insert(int key)
{
    Node * node = header;
    Node * update[MAX_LEVEL];
    memset(update, 0, MAX_LEVEL * sizeof(Node*));

    // 找到该结点在每一层应该被插入的位置
    for (int i = level - 1; i >= 0; i--)
    {
        while (node->forward[i] && node->forward[i]->key < key)
            node = node->forward[i];

        update[i] = node;
    }

    node = node->forward[0];

    if (node == nullptr || node->key != key)
    {
        int new_level = random_level();

        // 若新生成的层数比之前的大,那么高出的部分需特殊处理
        if (new_level > level)
        {
            for (int i = level; i < new_level; i++)
                update[i] = header;

            level = new_level;
        }

        Node * new_node = new Node(key, new_level);

        // 前后结点连接起来
        for (int i = 0; i < new_level; i++)
        {
            new_node->forward[i] = update[i]->forward[i];
            update[i]->forward[i] = new_node;
        }

        return true;
    }

    return false;
}

2.2 查找
blockchain
查找操作很简单,例如上图,现要查找 20,

  1. 从最高层开始找,17 < 20,继续往后,发现是 NULL,则往下一层继续查找;
  2. 25 > 20,则往下一层继续查找;
  3. 找到 20。
bool SkipList::find(int key)
{
    Node * node = header;

    for (int i = level - 1; i >= 0; i--)
    {
        while (node->forward[i] && node->forward[i]->key <= key)
            node = node->forward[i];

        if (node->key == key)
            return true;
    }

    return false;
}

2.3、删除

blockchain
  删除操作跟插入操作类似。 首先找到我们要删除结点的位置,在查找时使用临时空间来记录结点在每一层的位置,接着就是逐层的链表删除操作。 最后记住要释放空间。 删除结点之后,如果最高层没有结点存在,那么相应的,跳跃表的层数就应该降低。

bool SkipList::erase(int key)
{
    Node * node = header;
    Node * update[MAX_LEVEL];
    memset(update, 0, MAX_LEVEL * sizeof(Node*));

    // 找到要删除结点的位置
    for (int i = level - 1; i >= 0; i--)
    {
        while (node->forward[i] && node->forward[i]->key < key)
            node = node->forward[i];
        update[i] = node;
    }

    node = node->forward[0];

    if (node && node->key == key)
    {
        // 把待删除结点的前后结点连接起来
        for (int i = 0; i < level; i++)
            if (update[i]->forward[i] == node)
                update[i]->forward[i] = node->forward[i];

        delete node;

        // 如果最高层没有结点存在,那么相应的,跳跃表的层数就应该降低
        for (int i = level - 1; i >= 0; i--)
        {
            if (header->forward[i] == nullptr)
                level--;
            else
                break;
        }
    }

    return false;
}

完整代码

#include <iostream>
#include <cstdlib>
#include <cstring>

#define P 0.25
#define MAX_LEVEL 32

using namespace std;

struct Node
{
    int key;
    Node ** forward;
    Node(int key = 0, int level = MAX_LEVEL)
    {
        this->key = key;
        forward = new Node*[level];
        memset(forward, 0, level * sizeof(Node*));
    }
};

class SkipList
{
private:
    Node * header;
    int level;
private:
    int random_level();
public:
    SkipList();
    ~SkipList();
    bool insert(int key);
    bool find(int key);
    bool erase(int key);
    void print();
};

int SkipList::random_level()
{
    int level = 1;

    while ((rand() & 0xffff) < (P * 0xffff) && level < MAX_LEVEL)
        level++;

    return level;
}

SkipList::SkipList()
{
    header = new Node;
    level = 0;
}

SkipList::~SkipList()
{
    Node * cur = header;
    Node * next = nullptr;

    while (cur)
    {
        next = cur->forward[0];
        delete cur;
        cur = next;
    }

    header = nullptr;
}

bool SkipList::insert(int key)
{
    Node * node = header;
    Node * update[MAX_LEVEL];
    memset(update, 0, MAX_LEVEL * sizeof(Node*));

    // 找到该结点在每一层应该被插入的位置
    for (int i = level - 1; i >= 0; i--)
    {
        while (node->forward[i] && node->forward[i]->key < key)
            node = node->forward[i];

        update[i] = node;
    }

    node = node->forward[0];

    if (node == nullptr || node->key != key)
    {
        int new_level = random_level();

        // 若新生成的层数比之前的大,那么高出的部分需特殊处理
        if (new_level > level)
        {
            for (int i = level; i < new_level; i++)
                update[i] = header;

            level = new_level;
        }

        Node * new_node = new Node(key, new_level);

        // 前后结点连接起来
        for (int i = 0; i < new_level; i++)
        {
            new_node->forward[i] = update[i]->forward[i];
            update[i]->forward[i] = new_node;
        }

        return true;
    }

    return false;
}

bool SkipList::find(int key)
{
    Node * node = header;

    for (int i = level - 1; i >= 0; i--)
    {
        while (node->forward[i] && node->forward[i]->key <= key)
            node = node->forward[i];

        if (node->key == key)
            return true;
    }

    return false;
}

bool SkipList::erase(int key)
{
    Node * node = header;
    Node * update[MAX_LEVEL];
    memset(update, 0, MAX_LEVEL * sizeof(Node*));

    // 找到要删除结点的位置
    for (int i = level - 1; i >= 0; i--)
    {
        while (node->forward[i] && node->forward[i]->key < key)
            node = node->forward[i];
        update[i] = node;
    }

    node = node->forward[0];

    if (node && node->key == key)
    {
        // 把待删除结点的前后结点连接起来
        for (int i = 0; i < level; i++)
            if (update[i]->forward[i] == node)
                update[i]->forward[i] = node->forward[i];

        delete node;

        // 如果最高层没有结点存在,那么相应的,跳跃表的层数就应该降低
        for (int i = level - 1; i >= 0; i--)
        {
            if (header->forward[i] == nullptr)
                level--;
            else
                break;
        }
    }

    return false;
}

void SkipList::print()
{
    Node * node = nullptr;

    for (int i = 0; i < level; i++)
    {
        node = header->forward[i];
        cout << "Level " << i << " : ";
        while (node)
        {
            cout << node->key << " ";
            node = node->forward[i];
        }
        cout << endl;
    }

    cout << endl;
}

int main()
{
    SkipList sl;

    // test "insert"
    sl.insert(3);
    sl.insert(9);
    sl.insert(1); sl.insert(1);
    sl.insert(4);
    sl.insert(2); sl.insert(2);
    sl.insert(5);
    sl.insert(6);
    sl.insert(7);
    sl.insert(8);
    sl.insert(10);
    sl.insert(11);
    sl.insert(12);
    sl.print();

    // test "find"
    cout << sl.find(50) << endl;
    cout << sl.find(2) << endl;
    cout << sl.find(7) << endl << endl;

    // test "erase"
    sl.erase(1);
    sl.print();
    sl.erase(10);
    sl.print();
    sl.erase(11);
    sl.print();

    return 0;
}

运行如下(注意:结点层数采用的是随机值,故不同电脑可能会有不同的运行结果):

Level 0 : 1 2 3 4 5 6 7 8 9 10 11 12
Level 1 : 3 4 6 9 10 11
Level 2 : 4 10 11
Level 3 : 10 11
Level 4 : 10 11
Level 5 : 10 11
Level 6 : 10

0
1
1

Level 0 : 2 3 4 5 6 7 8 9 10 11 12
Level 1 : 3 4 6 9 10 11
Level 2 : 4 10 11
Level 3 : 10 11
Level 4 : 10 11
Level 5 : 10 11
Level 6 : 10

Level 0 : 2 3 4 5 6 7 8 9 11 12
Level 1 : 3 4 6 9 11
Level 2 : 4 11
Level 3 : 11
Level 4 : 11
Level 5 : 11

Level 0 : 2 3 4 5 6 7 8 9 12
Level 1 : 3 4 6 9
Level 2 : 4

效率分析与证明

首先回顾下插入操作中随机生成层数的函数:

#define P 0.25
#define MAX_LEVEL 32

int SkipList::random_level()
{
    int level = 1;

    while ((rand() & 0xffff) < (P * 0xffff) && level < MAX_LEVEL)
        level++;

    return level;
}

参考文献:
https://segmentfault.com/a/1190000022545575
https://www.qtmuniao.com/2020/07/03/leveldb-data-structures-skip-list/
https://segmentfault.com/a/1190000023927761
https://syt-honey.github.io/2019/03/23/17-%E8%B7%B3%E8%A1%A8%EF%BC%9A%E4%B8%BA%E4%BB%80%E4%B9%88Redis%E4%B8%80%E5%AE%9A%E8%A6%81%E7%94%A8%E8%B7%B3%E8%A1%A8%E6%9D%A5%E5%AE%9E%E7%8E%B0%E6%9C%89%E5%BA%8F%E9%9B%86%E5%90%88%EF%BC%9F/
https://www.jianshu.com/p/d4c2accd30fc
https://qimok.cn/787.html
https://segmentfault.com/a/1190000021618668 Redis系列(七)底层数据结构之跳跃表
https://www.jianshu.com/p/9d8296562806

相关文章
|
存储 NoSQL 算法
跳表
跳表
128 0
|
7月前
|
NoSQL 算法 Java
数据结构之跳表理解
数据结构之跳表理解
98 0
|
7月前
|
NoSQL Redis C++
平衡二叉树、跳跃表
平衡二叉树、跳跃表
|
机器学习/深度学习 算法 C++
跳表--C++实现
跳表--C++实现
72 0
|
存储 数据库 索引
跳表问题的探讨
跳表是一种高效的数据结构,它可以在有序链表上进行快速的搜索、插入、删除操作,时间复杂度为O(log n)。本文将介绍跳表的原理、实现方式以及其在实际应用中的优势和局限性。
171 0
|
算法
HashMap 可不可以不使用链表,而直接使用红黑树或者二叉搜索树或者 AVL 等其他的数据结构?
HashMap 可不可以不使用链表,而直接使用红黑树或者二叉搜索树或者 AVL 等其他的数据结构?
67 0
|
NoSQL Redis 索引
【数据结构】跳表
【数据结构】跳表
75 0
408数据结构学习笔记——二叉排序树、二叉平衡树、红黑树
408数据结构学习笔记——二叉排序树、二叉平衡树、红黑树
286 1
408数据结构学习笔记——二叉排序树、二叉平衡树、红黑树
数据结构158-红黑树-红黑树的认识
数据结构158-红黑树-红黑树的认识
53 0
数据结构158-红黑树-红黑树的认识
|
存储 算法 NoSQL
常见数据结构-跳表
常见数据结构-跳表
119 0