分桶排序算法在SQL中应用

简介: 分桶一词,大家应该不陌生,使用过Hive的同学都知道,hive里有个分通表,即针对某一列进行哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。写sql时将数据划分到对应组中进行分析也正是运用了分桶

业务需求分析中对数据按时序划分为不同的片段,针对相应片段进行分析的场景也有不少:停车时长、运行时长、断电时长等等。现结合实际需求的简化版来分析下如何运用分桶算法

案例:运输车辆上安装的有一设备可以监控到车辆启停状态,某天的监控状态数据如下表:device_id为设备id,device_time为设备上传数据的时间一秒一上传,ac_state为车辆启动停止的状态(1启动 0熄火),以下是模拟数据

device_id

device_time

ac_state

...

...

...

E1

1628317418

1

E1

1628317419

1

E1

1628317420

1

E1

1628317421

0

E1

1628317422

0

E1

1628317423

0

E1

1628317424

0

E1

1628317425

0

E1

1628317426

1

E1

1628317427

1

E1

1628317428

1

E1

1628317429

0

E1

1628317430

0

E1

1628317431

0

E1

1628317432

1

E1

1628317433

1

E1

1628317434

1

E2

1628317510

0

E2

1628317511

0

E2

1628317512

1

E2

1628317513

1

E2

1628317514

1

E2

1628317515

0

E2

1628317516

0

E2

1628317517

0

E2

1628317518

0

E2

1628317519

1

E2

1628317520

1

E2

1628317521

0

E2

1628317522

0

E2

1628317523

0

E2

1628317524

0

E2

1628317525

0

E2

1628317526

0

...

...

...

需要分析某天车辆停车次数、停车时长及停车开始和结束时间,如下表所示

date

device_id

power_off_ct

sn

power_off_duration

start_time

end_time

2021-08-07

E1

2

1

5

2021-08-07 14:23:41

2021-08-07 14:23:45

2021-08-07

E1

2

2

3

2021-08-07 14:23:49

2021-08-07 14:23:51

...

...

...

...

...

...

...

分析:观察数据就会发现ac_state字段已经分好组了,这在之前的分析就是一个标记列了(满足条件标记1不满足标记0),虽已经分好组但是不能直接根据这个组进行计算,我们需要将这个组重新分组并标注递增的组好,如何重新分组呢;我们先看下将ac_state整体往下移动一条数据的距离,会发现不同分组数据有交叉,有了这个交叉之后,可以对数据重新标记

image.png

新标记的一列数据进行累加,0值相加还未0,遇到1就累积增1,这就行成了分组效果,也即是将数据划分为不同的桶,可以利用sum(if)组合进行实现,这在之前的文章分析中已经直接用了但未做具体解释

image.png

  1. 首先生成示例数据
with tb1 as(select        device_id,        device_time,        ac_state
fromvalues('E1',1628317418,1),('E1',1628317419,1),('E1',1628317420,1),('E1',1628317421,0),('E1',1628317422,0),('E1',1628317423,0),('E1',1628317424,0),('E1',1628317425,0),('E1',1628317426,1),('E1',1628317427,1),('E1',1628317428,1),('E1',1628317429,0),('E1',1628317430,0),('E1',1628317431,0),('E1',1628317432,1),('E1',1628317433,1),('E1',1628317434,1),('E2',1628317510,0),('E2',1628317511,0),('E2',1628317512,1),('E2',1628317513,1),('E2',1628317514,1),('E2',1628317515,0),('E2',1628317516,0),('E2',1628317517,0),('E2',1628317518,0),('E2',1628317519,1),('E2',1628317520,1),('E2',1628317521,0),('E2',1628317522,0),('E2',1628317523,0),('E2',1628317524,0),('E2',1628317525,0),('E2',1628317526,0)               t(device_id,device_time,ac_state))
  1. 数据移动采用lag函数进行
tb2 as(select        device_id,        device_time,        ac_state,        from_unixtime(device_time)datetime,        lag(ac_state,1,1) over(partition by device_id orderby device_time) lag_ac_state
from tb1
)
  1. 使用sum(if)进行分桶
tb3 as(select        device_id,        device_time,        ac_state,datetime,        lag_ac_state,        sum(if(ac_state!=lag_ac_state,1,0)) over(partition by device_id orderby device_time) flag
from tb2
where ac_state =0--过滤全为0的数据方便进行分桶)--结果展示如下device_id device_time ac_state  datetime  lag_ac_state  flag
E1  162831742102021-08-0714:23:4111E1  162831742202021-08-0714:23:4201E1  162831742302021-08-0714:23:4301E1  162831742402021-08-0714:23:4401E1  162831742502021-08-0714:23:4501E1  162831742902021-08-0714:23:4912E1  162831743002021-08-0714:23:5002E1  162831743102021-08-0714:23:5102E2  162831751002021-08-0714:25:1011E2  162831751102021-08-0714:25:1101E2  162831751502021-08-0714:25:1512E2  162831751602021-08-0714:25:1602E2  162831751702021-08-0714:25:1702E2  162831751802021-08-0714:25:1802E2  162831752102021-08-0714:25:2113E2  162831752202021-08-0714:25:2203E2  162831752302021-08-0714:25:2303E2  162831752402021-08-0714:25:2403E2  162831752502021-08-0714:25:2503E2  162831752602021-08-0714:25:2603
  1. 计算停车次数
tb4 as(select        device_id,        device_time,        ac_state,datetime,        flag,        max(flag) over(partition by device_id) ct
from tb3
)
  1. 按设备和分桶号进行分组统计结果
select    substr(min(datetime),1,10)asdate,    device_id,    min(ct)as power_off_ct,    flag as sn,    max(device_time)-min(device_time)as power_off_duration,    min(datetime)as start_time,    max(datetime)as end_time
from tb4
groupby device_id,flag;--结果如下date  device_id power_off_ct  sn  power_off_duration  start_time  end_time
2021-08-07  E1  2142021-08-0714:23:412021-08-0714:23:452021-08-07  E1  2222021-08-0714:23:492021-08-0714:23:512021-08-07  E2  3112021-08-0714:25:102021-08-0714:25:112021-08-07  E2  3232021-08-0714:25:152021-08-0714:25:182021-08-07  E2  3352021-08-0714:25:212021-08-0714:25:26

以上就是分析过程,在业务分析过程中该方法能很好的解决类似需求,举一反三,希望能帮助到大家。

拜了个拜

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
193 65
|
1月前
|
存储 人工智能 自然语言处理
算法、系统和应用,三个视角全面读懂混合专家(MoE)
【8月更文挑战第17天】在AI领域,混合专家(MoE)模型以其独特结构成为推动大型语言模型发展的关键技术。MoE通过动态选择专家网络处理输入,实现条件计算。稀疏型MoE仅激活部分专家以减少计算负担;软MoE则加权合并专家输出提升模型稳定性。系统层面,MoE优化计算、通信与存储,利用并行化策略提高效率。在NLP、CV、推荐系统等领域展现强大应用潜力,但仍面临训练稳定性、可解释性等挑战。[论文链接: https://arxiv.org/pdf/2407.06204]
182 63
WK
|
3天前
|
机器学习/深度学习 算法 数据挖掘
PSO算法的应用场景有哪些
粒子群优化算法(PSO)因其实现简单、高效灵活,在众多领域广泛应用。其主要场景包括:神经网络训练、工程设计、电力系统经济调度与配电网络重构、数据挖掘中的聚类与分类、控制工程中的参数整定、机器人路径规划、图像处理、生物信息学及物流配送和交通管理等。PSO能处理复杂优化问题,快速找到全局最优解或近似解,展现出强大的应用潜力。
WK
14 1
|
12天前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
19天前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
24天前
|
算法 C++
A : DS串应用–KMP算法
这篇文章提供了KMP算法的C++实现,包括计算模式串的next数组和在主串中查找模式串位置的函数,用于演示KMP算法的基本应用。
|
27天前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
56 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
76 6
|
1月前
|
机器学习/深度学习 自然语言处理 负载均衡
揭秘混合专家(MoE)模型的神秘面纱:算法、系统和应用三大视角全面解析,带你领略深度学习领域的前沿技术!
【8月更文挑战第19天】在深度学习领域,混合专家(Mixture of Experts, MoE)模型通过整合多个小型专家网络的输出以实现高性能。从算法视角,MoE利用门控网络分配输入至专家网络,并通过组合机制集成输出。系统视角下,MoE需考虑并行化、通信开销及负载均衡等优化策略。在应用层面,MoE已成功应用于Google的BERT模型、Facebook的推荐系统及Microsoft的语音识别系统等多个场景。这是一种强有力的工具,能够解决复杂问题并提升效率。
46 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【人工智能】线性回归模型:数据结构、算法详解与人工智能应用,附代码实现
线性回归是一种预测性建模技术,它研究的是因变量(目标)和自变量(特征)之间的关系。这种关系可以表示为一个线性方程,其中因变量是自变量的线性组合。
40 2