Building deep retrieval models

简介: In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power.

In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power.
In general, deeper models are capable of learning more complex patterns than shallower models. For example, our user model incorporates user ids and timestamps to model user preferences at a point in time. A shallow model (say, a single embedding layer) may only be able to learn the simplest relationships between those features and movies: a given movie is most popular around the time of its release, and a given user generally prefers horror movies to comedies. To capture more complex relationships, such as user preferences evolving over time, we may need a deeper model with multiple stacked dense layers.

Of course, complex models also have their disadvantages. The first is computational cost, as larger models require both more memory and more computation to fit and serve. The second is the requirement for more data: in general, more training data is needed to take advantage of deeper models. With more parameters, deep models might overfit or even simply memorize the training examples instead of learning a function that can generalize. Finally, training deeper models may be harder, and more care needs to be taken in choosing settings like regularization and learning rate.
Finding a good architecture for a real-world recommender system is a complex art, requiring good intuition and careful hyperparameter tuning. For example, factors such as the depth and width of the model, activation function, learning rate, and optimizer can radically change the performance of the model. Modelling choices are further complicated by the fact that good offline evaluation metrics may not correspond to good online performance, and that the choice of what to optimize for is often more critical than the choice of model itself.
Nevertheless, effort put into building and fine-tuning larger models often pays off. In this tutorial, we will illustrate how to build deep retrieval models using TensorFlow Recommenders. We'll do this by building progressively more complex models to see how this affects model performance.

import os
import tempfile

%matplotlib inline
import matplotlib.pyplot as plt

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds

import tensorflow_recommenders as tfrs

plt.style.use('seaborn-whitegrid')

In this tutorial we will use the models from the featurization tutorial to generate embeddings. Hence we will only be using the user id, timestamp, and movie title features.

ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")

ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])

We also do some housekeeping to prepare feature vocabularies.

timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100)))

max_timestamp = timestamps.max()
min_timestamp = timestamps.min()

timestamp_buckets = np.linspace(
    min_timestamp, max_timestamp, num=1000,
)

unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
    lambda x: x["user_id"]))))

Model definition

Query model

We start with the user model defined in the featurization tutorial as the first layer of our model, tasked with converting raw input examples into feature embeddings.

class UserModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    self.user_embedding = tf.keras.Sequential([
        tf.keras.layers.experimental.preprocessing.StringLookup(
            vocabulary=unique_user_ids, mask_token=None),
        tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
    ])
    self.timestamp_embedding = tf.keras.Sequential([
        tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()),
        tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
    ])
    self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization()

    self.normalized_timestamp.adapt(timestamps)

  def call(self, inputs):
    # Take the input dictionary, pass it through each input layer,
    # and concatenate the result.
    return tf.concat([
        self.user_embedding(inputs["user_id"]),
        self.timestamp_embedding(inputs["timestamp"]),
        self.normalized_timestamp(inputs["timestamp"]),
    ], axis=1)

Defining deeper models will require us to stack mode layers on top of this first input. A progressively narrower stack of layers, separated by an activation function, is a common pattern:

                            +----------------------+
                            |      128 x 64        |
                            +----------------------+
                                       | relu
                          +--------------------------+
                          |        256 x 128         |
                          +--------------------------+
                                       | relu
                        +------------------------------+
                        |          ... x 256           |
                        +------------------------------+

Since the expressive power of deep linear models is no greater than that of shallow linear models, we use ReLU activations for all but the last hidden layer. The final hidden layer does not use any activation function: using an activation function would limit the output space of the final embeddings and might negatively impact the performance of the model. For instance, if ReLUs are used in the projection layer, all components in the output embedding would be non-negative.

We're going to try something similar here. To make experimentation with different depths easy, let's define a model whose depth (and width) is defined by a set of constructor parameters.

class QueryModel(tf.keras.Model):
  """Model for encoding user queries."""

  def __init__(self, layer_sizes):
    """Model for encoding user queries.

    Args:
      layer_sizes:
        A list of integers where the i-th entry represents the number of units
        the i-th layer contains.
    """
    super().__init__()

    # We first use the user model for generating embeddings.
    self.embedding_model = UserModel()

    # Then construct the layers.
    self.dense_layers = tf.keras.Sequential()

    # Use the ReLU activation for all but the last layer.
    for layer_size in layer_sizes[:-1]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))

    # No activation for the last layer.
    for layer_size in layer_sizes[-1:]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size))

  def call(self, inputs):
    feature_embedding = self.embedding_model(inputs)
    return self.dense_layers(feature_embedding)

The layer_sizes parameter gives us the depth and width of the model. We can vary it to experiment with shallower or deeper models.

Candidate model

We can adopt the same approach for the movie model. Again, we start with the MovieModel from the featurization tutorial:

class MovieModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    max_tokens = 10_000

    self.title_embedding = tf.keras.Sequential([
      tf.keras.layers.experimental.preprocessing.StringLookup(
          vocabulary=unique_movie_titles,mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
    ])

    self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
        max_tokens=max_tokens)

    self.title_text_embedding = tf.keras.Sequential([
      self.title_vectorizer,
      tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
      tf.keras.layers.GlobalAveragePooling1D(),
    ])

    self.title_vectorizer.adapt(movies)

  def call(self, titles):
    return tf.concat([
        self.title_embedding(titles),
        self.title_text_embedding(titles),
    ], axis=1)

And expand it with hidden layers:

class CandidateModel(tf.keras.Model):
  """Model for encoding movies."""

  def __init__(self, layer_sizes):
    """Model for encoding movies.

    Args:
      layer_sizes:
        A list of integers where the i-th entry represents the number of units
        the i-th layer contains.
    """
    super().__init__()

    self.embedding_model = MovieModel()

    # Then construct the layers.
    self.dense_layers = tf.keras.Sequential()

    # Use the ReLU activation for all but the last layer.
    for layer_size in layer_sizes[:-1]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))

    # No activation for the last layer.
    for layer_size in layer_sizes[-1:]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size))

  def call(self, inputs):
    feature_embedding = self.embedding_model(inputs)
    return self.dense_layers(feature_embedding)

Combined model

With both QueryModel and CandidateModel defined, we can put together a combined model and implement our loss and metrics logic. To make things simple, we'll enforce that the model structure is the same across the query and candidate models.

class MovielensModel(tfrs.models.Model):

  def __init__(self, layer_sizes):
    super().__init__()
    self.query_model = QueryModel(layer_sizes)
    self.candidate_model = CandidateModel(layer_sizes)
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.candidate_model),
        ),
    )

  def compute_loss(self, features, training=False):
    # We only pass the user id and timestamp features into the query model. This
    # is to ensure that the training inputs would have the same keys as the
    # query inputs. Otherwise the discrepancy in input structure would cause an
    # error when loading the query model after saving it.
    query_embeddings = self.query_model({
        "user_id": features["user_id"],
        "timestamp": features["timestamp"],
    })
    movie_embeddings = self.candidate_model(features["movie_title"])

    return self.task(
        query_embeddings, movie_embeddings, compute_metrics=not training)

Training the model

Prepare the data

We first split the data into a training set and a testing set.

tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

cached_train = train.shuffle(100_000).batch(2048)
cached_test = test.batch(4096).cache()

Shallow model

We're ready to try out our first, shallow, model!

num_epochs = 300

model = MovielensModel([32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

one_layer_history = model.fit(
    cached_train,
    validation_data=cached_test,
    validation_freq=5,
    epochs=num_epochs,
    verbose=0)

accuracy = one_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")

This gives us a top-100 accuracy of around 0.27. We can use this as a reference point for evaluating deeper models.

Deeper model

What about a deeper model with two layers?

model = MovielensModel([64, 32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

two_layer_history = model.fit(
    cached_train,
    validation_data=cached_test,
    validation_freq=5,
    epochs=num_epochs,
    verbose=0)

accuracy = two_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")

The accuracy here is 0.29, quite a bit better than the shallow model.

We can plot the validation accuracy curves to illustrate this:

Even early on in the training, the larger model has a clear and stable lead over the shallow model, suggesting that adding depth helps the model capture more nuanced relationships in the data.
However, even deeper models are not necessarily better. The following model extends the depth to three layers:

model = MovielensModel([128, 64, 32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

three_layer_history = model.fit(
    cached_train,
    validation_data=cached_test,
    validation_freq=5,
    epochs=num_epochs,
    verbose=0)

accuracy = three_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/NLP_recommend/Building%20deep%20retrieval%20models.ipynb

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
OneIE:A Joint Neural Model for Information Extraction with Global Features论文解读
大多数现有的用于信息抽取(IE)的联合神经网络模型使用局部任务特定的分类器来预测单个实例(例如,触发词,关系)的标签,而不管它们之间的交互。
193 0
|
机器学习/深度学习 算法
【RLchina第四讲】Model-Based Reinforcement Learning(下)
【RLchina第四讲】Model-Based Reinforcement Learning(下)
190 0
|
机器学习/深度学习 资源调度 算法
【RLchina第四讲】Model-Based Reinforcement Learning(上)
【RLchina第四讲】Model-Based Reinforcement Learning(上)
708 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
146 0
|
机器学习/深度学习 编解码 自然语言处理
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers论文解读
我们提出了SegFormer,一个简单,高效而强大的语义分割框架,它将transformer与轻量级多层感知器(MLP)解码器统一起来。
820 0
|
机器学习/深度学习 自然语言处理
【论文解读】Self-Explaining Structures Improve NLP Models
浙大联合北大出了篇比较有意思的文章,从模型解释的角度设计了一个称为Self-Explaining的网络模型,该网络模型可以直接加在任何预训练模型之上,来提高模型的性能和准确率。现在让我们来看看这篇文章吧。
227 0
|
机器学习/深度学习 存储 传感器
Automated defect inspection system for metal surfaces based on deep learning and data augmentation
简述:卷积变分自动编码器(CVAE)生成特定的图像,再使用基于深度CNN的缺陷分类算法进行分类。在生成足够的数据来训练基于深度学习的分类模型之后,使用生成的数据来训练分类模型。
157 0
|
机器学习/深度学习 传感器 数据挖掘
Review on the Recent Welding Research with Application of CNN-Based Deep Learning
Guo等人16)将CNN应用于线管制造过程中的电阻焊,提出了一种正常焊缝与缺陷焊缝的分类模型,准确率达到99.01%。
111 0
|
机器学习/深度学习 算法 数据挖掘
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
153 0
|
机器学习/深度学习 移动开发 自然语言处理
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读