SLS数据加工——动态解析与分发日志实战

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云备份 Cloud Backup,100GB 3个月
简介: 阿里云日志服务提供可托管、可扩展、高可用的数据加工服务。数据加工服务可用于数据的规整、富化、流转、脱敏和过滤。本文为读者带来了数据加工动态解析与分发的最佳实践。

背景

阿里云日志服务提供可托管、可扩展、高可用的数据加工服务。数据加工服务可用于数据的规整、富化、流转、脱敏和过滤。本文为读者带来了数据加工动态解析与分发的最佳实践。


场景

现有多个不同的APP,所有APP的程序运行日志都输入到同一个中心Logstore中。每个APP的日志都是以分隔符分隔的文本日志,但是日志字段schema各不相同。日志样例如下:

APP_1的日志样例
content: schema_app1|113.17.4.39|www.zsc.mock.com|PUT|1082|404|https|28.3|Mozilla/5.0
APP_2的日志样例
content: schema_app2|183.93.165.82|db-01|MySQL|5.5|0|cn-shanghai|1072|user-2
APP_3的日志样例
content: schema_app3|root|container4|image3|www.jd.mock.com|221.176.106.202|200|01/Apr/2021:06:27:56

上述APP的日志格式为:"schema_id|字段值1|字段值2|字段值3..."

  • schema_id为该日志的字段schema的ID
  • "字段值X"是日志的各个字段值,每个字段值的字段名由schema_id对应schema定义。


所有schema的定义存储在OSS的一个文件中,并与schema_id一一映射。Schema定义文件的内容格式如下:

{
  "schema_app1": {
    "fields": ["client_ip", "host", "http_method", "resquest_length", "status_code", "request_time", "user_agent"],
    "logstore": "logstore_app1"
  },
  "schema_app2": {
    "fields": ["client_ip", "db_name", "db_type", "db_version", "fail", "region", "check_rows", "user_name"],
    "logstore": "logstore_app2"
  },
  "schema_app3": {
    "fields": ["user", "container_name", "image_name", "referer", "container_ip", "status_code", "datetime"],
    "logstore": "logstore_app3"
  },
}

其中schema_app1等是schema_id。每个schema的定义包含两个字段,fields和logstore,fields定义了该schema对应的字段名列表,logstore定义了该schema的日志要分发的目标logstore名。


需求

  1. 对中心Logstore中不同Schema的日志进行动态解析(Schema在动态变化),将分隔符分隔的各个字段值映射到对应的字段名上,形成结构化的日志。
  2. 不同Schema的日志分发到不同的Logstore中。


例子:

  • 中心Logstore的原始日志
content: schema_app1|113.17.4.39|www.zsc.mock.com|PUT|1082|404|https|28.3|Mozilla/5.0
content: schema_app2|183.93.165.82|db-01|MySQL|5.5|0|cn-shanghai|1072|user-2


  • 加工后的日志
输出到logstore_app1:
{"client_ip": "113.17.4.39", "host": "www.zsc.mock.com", "http_method": "PUT", "resquest_length": 1082, "status_code": 404, "request_time": 28.3, "user_aent": "Mozilla/5.0"}
输出到logstore_app2:
{"client_ip": "183.93.165.82", "db_name": "db-01", "db_type": "MySQL", "db_version": "5.5", "fail": 0, "region": "cn-shanghai", "check_rows": 1072, "user_name": "user-2"}


数据加工语法

数据加工的创建流程参考创建数据加工任务

# 1.原始日志切分出schema_id和日志内容raw_content
e_set("split_array", str_partition(v("content"), "|"))
e_set("schema_id", lst_get(v("split_array"), 0))
e_set("raw_content", lst_get(v("split_array"), 2))
# 2.根据schema_id从OSS读取对应的schema内容
e_set(
    "schema",
    dct_get(
        res_oss_file(
            endpoint="http://oss-cn-hangzhou.aliyuncs.com",
            ak_id=res_local("AK_ID"),
            ak_key=res_local("AK_KEY"),
            bucket="ali-licheng-demo",
            file="schema_lib/schema.json",
            change_detect_interval=20,
        ),
        v("schema_id"),
    ),
)
# 3.从schema中读取字段名列表fields和分发的目标Logstore
e_set("fields", dct_get(v("schema"), "fields"))
e_set("target_logstore", dct_get(v("schema"), "logstore"))
# 丢弃多余字段
e_keep_fields("raw_content", "fields", "target_logstore", F_TIME, F_META)
# 4.解析分隔符日志,并映射到fields中的字段上
e_psv("raw_content", json_parse(v("fields")))
# 丢弃多余字段
e_drop_fields("fields", "raw_content")
# 5.根据schema中定义的logstore名,动态分发
e_output(project="licheng-simulator-test", logstore=v("target_logstore"))


上述加工语法的加工总体流程如下:

1.将原始日志切分出schema_id和日志内容raw_content,即:

原始日志:
content: schema_app1|113.17.4.39|www.zsc.mock.com|PUT|1082|404|https|28.3|Mozilla/5.0
切分为:
schema_id: schema_app1
raw_content: 113.17.4.39|www.zsc.mock.com|PUT|1082|404|https|28.3|Mozilla/5.0


2.根据schema_id从OSS读取对应的schema内容

3. 从schema中读取字段名列表fields和分发的目标Logstore

  • 每个schema中都定义了该schema日志的字段名列表以及分发的目标Logstore名

4.解析分隔符日志,并映射到fields中的字段上

5.根据schema中定义的分发logstore名,实现日志的动态分发。


加工后的结果示例


后续维护

后续维护过程中,如果APP日志的Schema发生变化,或者有新的APP日志进来,只需在OSS中的schema库文件中修改和增加对应APP的schema定义即可,无需对加工任务做任何修改。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
3月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
184 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
3月前
|
SQL Oracle 关系型数据库
【赵渝强老师】Oracle的联机重做日志文件与数据写入过程
在Oracle数据库中,联机重做日志文件记录了数据库的变化,用于实例恢复。每个数据库有多组联机重做日志,每组建议至少有两个成员。通过SQL语句可查看日志文件信息。视频讲解和示意图进一步解释了这一过程。
|
4月前
|
数据采集 机器学习/深度学习 存储
使用 Python 清洗日志数据
使用 Python 清洗日志数据
64 2
|
5月前
|
存储 监控 数据可视化
SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
【9月更文挑战第2天】SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
215 9
|
5月前
|
SQL 人工智能 运维
在阿里云日志服务轻松落地您的AI模型服务——让您的数据更容易产生洞见和实现价值
您有大量的数据,数据的存储和管理消耗您大量的成本,您知道这些数据隐藏着巨大的价值,但是您总觉得还没有把数据的价值变现出来,对吗?来吧,我们用一系列的案例帮您轻松落地AI模型服务,实现数据价值的变现......
280 3
|
6月前
|
数据库 Java 监控
Struts 2 日志管理化身神秘魔法师,洞察应用运行乾坤,演绎奇幻篇章!
【8月更文挑战第31天】在软件开发中,了解应用运行状况至关重要。日志管理作为 Struts 2 应用的关键组件,记录着每个动作和决策,如同监控摄像头,帮助我们迅速定位问题、分析性能和使用情况,为优化提供依据。Struts 2 支持多种日志框架(如 Log4j、Logback),便于配置日志级别、格式和输出位置。通过在 Action 类中添加日志记录,我们能在开发过程中获取详细信息,及时发现并解决问题。合理配置日志不仅有助于调试,还能分析用户行为,提升应用性能和稳定性。
74 0
|
6月前
|
开发者 前端开发 编解码
Vaadin解锁移动适配新境界:一招制胜,让你的应用征服所有屏幕!
【8月更文挑战第31天】在移动互联网时代,跨平台应用开发备受青睐。作为一款基于Java的Web应用框架,Vaadin凭借其组件化设计和强大的服务器端渲染能力,助力开发者轻松构建多设备适应的Web应用。本文探讨Vaadin与移动设备的适配策略,包括响应式布局、CSS媒体查询、TouchKit插件及服务器端优化,帮助开发者打造美观且实用的移动端体验。通过这些工具和策略的应用,可有效应对屏幕尺寸、分辨率及操作系统的多样性挑战,满足广大移动用户的使用需求。
82 0
|
3月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
815 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
2月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
4月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
429 3

相关产品

  • 日志服务
  • 推荐镜像

    更多