AI大觉醒:图灵奖得主Bengio称AI将产生意识,未来机器学习核心是注意力机制

简介:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


人工智能会产生意识吗?

这是一直以来美剧《西部世界》中探讨的问题。AI主人公觉醒,意识到这个世界是人类杀伐主宰的乐园,于是开启了逆袭之路。

1

在本周举行的2020年ICLR上,图灵奖得主、蒙特利尔学习算法研究所主任Yoshua Bengio对AI和机器学习的未来提供了最新的见解。他讲到未来机器学习完全有可能超越无意识,向全意识迈进。而注意力机制正是实现这一过程的关键要素。

这位大咖2月份刚刚在纽约的2020年AAAI 会议上与图灵奖获得者 Geoffrey Hinton 和 Yann LeCun 一起发表了演讲。而在ICLR的演讲中,Bengio 阐述了他更早之前的一些想法。

注意力机制是啥?

注意力机制来源于人类的视觉注意力,是人类在进化过程中形成的一种处理视觉信息的机制。最简单的例子,比如看一个图片,会有特别显眼的场景率先吸引注意力,因为大脑中对这类东西很敏感。

2

注意力是神经科学理论的核心,该理论认为人们的注意力资源有限,所以大脑会自动提炼最有用的信息。

在机器学习的语境下,「注意力」指的是一个算法关注一个或同时关注到几个元素的机制。它是一些机器学习模型架构的核心。2017年,谷歌论文Attention is All You Need当中提出了Transformer,一个利用注意力机制来提高模型训练速度的方法。Transformer在一些特定任务中性能表现超过Google之前的神经机器翻译模型。

3

Google Transformer架构

目前,注意力模型(Attention Model)已经在自然语言处理、图像识别以及语音识别等领域取得了最先进的成果,是深度学习技术中最值得关注与深入了解的核心技术之一。注意力模型也是构成企业AI的基础,帮助员工完成一系列认知要求高的任务。

类比人类思维,靠直觉还是靠推理?

Bengio 在演讲中谈到了美籍以色列心理学家兼经济学家 Daniel Kahneman 在他2011出版的开创性著作《思考,快与慢》中提出的认知系统。

4

第一种认知类型是无意识的(快系统),凭直觉,非常快速,非语言性的,基于惯性,它只涉及隐含的知识类型,是人潜意识中的知识,深藏于脑海中。

简单说,这种过程不费脑子,第一反应,直觉地做出回应。比如说,思考1+1=2的过程。

当然这种直觉思考的过程会产生很多偏差,比如说曝光效应,光环效应等。曝光效应一个最明显的例子就是电视广告,天天重复播放的信息给你洗脑,会在人的大脑里构成曝光效应,让你觉得这个产品好。直觉很多时候是非理性的。

第二种认知类型是有意识的(慢系统),基于语言学和算法,要涉及更高级一些的推理和规划,以及显性的知识。换句话说,是需要费力思考的,比较慢,比如说脑内运算158乘以67。

正是快和慢的结合构成了我们人类的思维模式。

Bengio将这个人类的有意识思维和AI进行对比,他指出,有意识的认知系统的一个有趣特征是,它可以在新的情境下,将语义概念进行重组,这也是人工智能和机器学习算法所具备的特性。

某种程度上,AI和机器学习算法比人脑的直觉要更加理性。

这让人想起《西部世界》的科学顾问,神经学家大卫·伊格尔曼(David Eagleman)说的一句话,意识,是一种突破程序设定的连接。我们能够复制大脑的算法;如果这个算法等同于意识,那意识也理应可以被复制和转移。

5

意识从无到有,未来AI不再「跟着感觉走」?

目前的机器学习方法还没有完全超越无意识到全意识,但是 Bengio 相信这种转变未来是完全有可能的。

他指出,神经科学研究表明,有意识的思维中涉及的语义变量往往是含有因果关系的ーー它们涉及的对象可控,比如说意图。换句话说,不再跟着感觉走,是有逻辑和目的性在其中。

同时,语义变量和思维之间存在映射关系,例如词语和句子之间的关系,而且已有的概念可以进行重新组合,形成新的、不熟悉的概念。

注意力正是实现这一过程的核心要素之一,Bengio 解释道。

在此基础上,他和同事们在去年的一篇论文中提出了循环独立机制(recurrent independent mechanism,RIMs) ,这是一种新的模型架构,在这种架构中,多组单元独立运作,相互之间通过注意力机制交流。前者保证了专业,后者保证了泛化。

6

实验目标是,证明 RIM 能够改善模型在不同环境和模块化任务中的泛化效果。该研究不关注该方法是否超出高度优化的基线模型,而是想展示该方法面对大量不同任务时的通用性,且这些任务的环境是不断变化的。

7

图 10:RIM 与 LSTM 基线模型的对比。在这 4 个不同实验中,研究者对比了 RIM 和两个不同的 LSTM 基线模型。在所有案例中,研究者发现 rollout 过程中,RIM 比 LSTM 更准确地捕捉到球的运动轨迹。

实验结果表明,RIM具备专门化(specialization)特性,可大幅提升模型在大量不同任务上的泛化性能。

「这使得智能体能够更快地适应分布的变化,或者... ... 推断出变化发生的原因,」Bengio 说。

他又讲到想要打造「有意识」的AI系统面临几大挑战,包括训练模型进行元学习(或理解数据中的因果关系) ,以及加强机器学习和强化学习之间的集成。但他相信,生物学和AI研究之间的相互作用最终将解开这把神奇的钥匙,使这些机器可以像人类一样推理,甚至表达情感。

8

「神经科学早已开始研究意识相关的问题了... ... 在过去的几十年里取得了很大进展。我认为现在是时候将这些进展纳入到机器学习模型当中了。」Bengio在演讲中表示。

看来西部世界中的世界也不远了...

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-29
本文作者:梦佳
本文来自:“新智元”,了解相关信息可以关注“新智元”

相关文章
|
1月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
1月前
|
SQL 人工智能 关系型数据库
PolarDB-PG AI最佳实践 2 :PolarDB AI X EAS实现自定义库内模型推理最佳实践
PolarDB通过POLAR_AI插件支持使用SQL调用AI/ML模型,无需专业AI知识或额外部署环境。结合阿里云EAS在线模型服务,可轻松部署自定义模型,在SQL中实现如文本翻译等功能。
|
1月前
|
人工智能 安全 大数据
PAI年度发布:GenAI时代AI基础设施的演进
本文介绍了AI平台在大语言模型时代的新能力和发展趋势。面对推理请求异构化、持续训练需求及安全可信挑战,平台推出了一系列优化措施,包括LLM智能路由、多模态内容生成服务、serverless部署模式等,以提高资源利用效率和降低使用门槛。同时,发布了训推一体调度引擎、竞价任务等功能,助力企业更灵活地进行训练与推理任务管理。此外,PAI开发平台提供了丰富的工具链和最佳实践,支持从数据处理到模型部署的全流程开发,确保企业和开发者能高效、安全地构建AI应用,享受AI带来的红利。
|
2月前
|
人工智能 安全 算法
PAI负责任的AI解决方案: 安全、可信、隐私增强的企业级AI
在《PAI可信AI解决方案》会议中,分享了安全、可信、隐私增强的企业级AI。会议围绕三方面展开:首先通过三个案例介绍生活和技术层面的挑战;其次阐述构建AI的关键要素;最后介绍阿里云PAI的安全功能及未来展望,确保数据、算法和模型的安全与合规,提供全方位的可信AI解决方案。
|
1月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
1月前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
114 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
47 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
自动化测试的未来:AI与机器学习的融合之路
【10月更文挑战第41天】随着技术的快速发展,软件测试领域正经历一场由人工智能和机器学习驱动的革命。本文将探讨这一趋势如何改变测试流程、提高测试效率以及未来可能带来的挑战和机遇。我们将通过具体案例分析,揭示AI和ML在自动化测试中的应用现状及其潜力。
66 0