无标注数据是鸡肋还是宝藏?看阿里工程师这样用它 | 开发者必读(043期)

简介: 最炫的技术新知、最热门的大咖公开课、最有趣的开发者活动、最实用的工具干货,就在《开发者必读》!

最炫的技术新知、最热门的大咖公开课、最有趣的开发者活动、最实用的工具干货,就在《开发者必读》!

每日集成开发者社区精品内容,你身边的技术资讯管家。


每日头条

无标注数据是鸡肋还是宝藏?阿里工程师这样用它

针对业务场景中标注数据不足、大量的无标注数据又难以有效利用的问题,我们提出了一种面向行为序列数据的深度学习风控算法 Auto Risk,提出通过代理任务从无标注数据中学习通用的特征表示。

image.png

这种思想与目前 NLP 领域前沿的 Bert 等预训练模型不谋而合,但是由于行为序列数据和业务的特点显著区别于 NLP,模型的设计和实现又有很大区别。最终,模型在真实场景中落地并取得了显著的增益;实验验证具有较好的多场景泛化能力;相比纯粹的监督学习,在小样本情况下提升明显。


最强干货

支付宝:你长大了,该学会认识新朋友了!

在今年的拉动手淘用户增长战略中,支付宝小程序作为日活2亿同时包含大量手淘新用户的场景,在拉新中承担着十分重要的作用。我们的目标人群是将用户转化为淘宝用户,阿里工程师是用什么方法完成这样的转化呢?这篇文章马上为你揭晓!

为什么短视频会让人刷不停?背后也许用了这套技术

基于时间碎片化、视频交互强、内容丰富、体验好等因素使得短视频近几年处在流量风暴的中心,各大平台纷纷涉足短视频领域。因此,平台对短视频内容的推荐尤为重要,千人千面是短视频推荐核心竞争力。短视频一般从“点击率”与“观看时长”两方面优化来提升用户消费时长。接下来,阿里工程师从这两方面重点论述短视频模型点击时长多目标优化。

10种传统机器学习算法,阿里工程师帮你总结了

这篇文章主要介绍推荐系统中传统机器学习算法,写这篇文章的主要目的是对业界主流推荐算法的一些总结,方便大家对主流推荐算法的底层实现有的了解,从而在业务实践过程中更好地理解算法,运用算法。在这篇文章中我们将介绍10种常见的推荐算法,并且列举一些实际的例子,希望能对你的推荐算法学习带来些许帮助。


精品公开课

开放 API 场景化最佳实践

阿里云OpenAPI技术专家青塘为你挑选开发者最常见的典型API使用场景,给出使用各种工具使用API的最佳方式,帮助您顺利而高效地利用阿里云API进行企业运维和资源管理。


每天读本书

《嵌入式Linux驱动开发教程》| 每日读本书

《嵌入式Linux驱动开发教程》结合大量实例,在基于ARM Cortex-A9四核处理器Exynos4412的硬件教学平台和PC上,全面详细地讲解了Linux设备驱动开发。

它既可作为大学院校电子、通信、计算机、自动化等专业的嵌入式Linux设备驱动开发课程的教材,也可供嵌入式Linux驱动开发人员参考。


每日集成开发者社区精品内容,请持续关注开发者必读

相关文章
|
7月前
|
机器学习/深度学习 设计模式 人工智能
深度解析Agent实现,定制自己的Manus
文章结合了理论分析与实践案例,旨在帮助读者系统地认识AI Agent的核心要素、设计模式以及未来发展方向。
2046 103
深度解析Agent实现,定制自己的Manus
|
5月前
|
存储 设计模式 人工智能
AI Agent安全架构实战:基于LangGraph的Human-in-the-Loop系统设计​
本文深入解析Human-in-the-Loop(HIL)架构在AI Agent中的核心应用,探讨其在高风险场景下的断点控制、状态恢复与安全管控机制,并结合LangGraph的创新设计与金融交易实战案例,展示如何实现效率与安全的平衡。
880 0
|
4月前
|
存储 自然语言处理 前端开发
百亿级知识库解决方案:从零带你构建高并发RAG架构(附实践代码)
本文详解构建高效RAG系统的关键技术,涵盖基础架构、高级查询转换、智能路由、索引优化、噪声控制与端到端评估,助你打造稳定、精准的检索增强生成系统。
905 2
|
7月前
|
存储 机器学习/深度学习 人工智能
使用 LangChain + Higress + Elasticsearch 构建 RAG 应用
本文介绍了如何利用LangChain、Higress和Elasticsearch快速构建RAG(检索增强生成)应用,实现企业知识的智能检索与问答。首先通过LangChain解析Markdown文档并写入Elasticsearch,接着部署Higress AI网关并配置ai-search插件以整合私有知识库与在线搜索功能。最后,通过实际案例展示了RAG查询流程及结果更新机制,确保内容准确性和时效性。文章还提供了相关参考资料以便进一步学习。
733 38
|
8月前
|
存储 人工智能 Java
Spring AI与DeepSeek实战四:系统API调用
在AI应用开发中,工具调用是增强大模型能力的核心技术,通过让模型与外部API或工具交互,可实现实时信息检索(如天气查询、新闻获取)、系统操作(如创建任务、发送邮件)等功能;本文结合Spring AI与大模型,演示如何通过Tool Calling实现系统API调用,同时处理多轮对话中的会话记忆。
1572 57
|
6月前
|
人工智能 前端开发 搜索推荐
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
本文介绍了使用LangGraph和LangSmith构建企业级多智能体AI系统的完整流程。从简单的ReAct智能体开始,逐步扩展至包含身份验证、人工干预、长期内存管理和性能评估的复杂架构。文章详细讲解了状态管理、工具集成、条件流程控制等关键技术,并对比了监督者架构与群体架构的优劣。通过系统化的方法,展示了如何构建可靠、可扩展的AI系统,为现代AI应用开发提供了坚实基础。*作者:Fareed Khan*
1482 0
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
|
8月前
|
存储 人工智能 自然语言处理
LangChain RAG入门教程:构建基于私有文档的智能问答助手
本文介绍如何利用检索增强生成(RAG)技术与LangChain框架构建基于特定文档集合的AI问答系统。通过结合检索系统和生成机制,RAG能有效降低传统语言模型的知识局限与幻觉问题,提升回答准确性。文章详细展示了从环境配置、知识库构建到系统集成的全流程,并提供优化策略以改进检索与响应质量。此技术适用于专业领域信息检索与生成,为定制化AI应用奠定了基础。
2698 5
LangChain RAG入门教程:构建基于私有文档的智能问答助手
|
存储 人工智能
|
11月前
|
算法 数据可视化 测试技术
共学 | 2025年,更加有效地搭建Agent
2024年末,Anthropic写了一篇叫做“Building effective Agents”的文章,针对如何有效的搭建Agent,常见Agent工作流程的几种范式,以及对现在的Code Agent工作模式做了详细的解读。本文结合cookbook+ModelScope的免费Qwen API做了一些中文示例的实践,来更好的理解这篇文章。
2137 7
共学 | 2025年,更加有效地搭建Agent