像Google一样构建机器学习系统3 - 利用MPIJob运行ResNet101

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 从上篇文章中,我们可以看到如何通过Kubeflow Pipeline运行单节点任务机器学习工作流,在本文中,我们会介绍如何使用Pipeline运行分布式MPI任务,该MPI任务运行模型ResNet101的测试。

本系列将利用阿里云容器服务,帮助您上手Kubeflow Pipelines.

上篇文章中,我们可以看到如何通过Kubeflow Pipeline运行单节点任务机器学习工作流,在本文中,我们会介绍如何使用Pipeline运行分布式MPI任务,该MPI任务运行模型ResNet101的测试。

开发MPIRun Pipeline

由于Kubeflow Pipelines提供的例子多数都是单机任务,那么如何利用Pipelines运行分布式训练?阿里云容器服务团队提供了利用MPIJob训练ResNet101模型的例子,方便您在阿里云上使用和学习Kubeflow Pipelines,并且训练支持分布式的allreduce模型训练。

在Kubeflow Pipelines中可以用Python代码描述了这样一个流程, 完整代码可以查看mpi_run.py。我们在这个例子中使用了arena_op这是对于Kubeflow默认的container_op封装,能够实现对于分布式训练MPI和PS模式的无缝衔接,另外也支持使用GPU和RDMA等异构设备和分布式存储的无缝接入,同时也方便从git源同步代码。是一个比较实用的工具API。而arena_op是基于开源项目Arena

  env = ['NCCL_DEBUG=INFO','GIT_SYNC_BRANCH={0}'.format(git_sync_branch)]

  train=arena.mpi_job_op(
    name="all-reduce",
    image=image,
    env=env,
    data=[data],
    workers=workers,
    sync_source=sync_source,
    gpus=gpus,
    cpu_limit=cpu_limit,
    memory_limit=memory_limit,
    metrics=[metric],
    command="""
    mpirun python code/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model resnet101 \
    --batch_size {0}  --variable_update horovod --optimizer {1}\
    --summary_verbosity=3 --save_summaries_steps=10
    """.format(batch_size, optimizer)
  )

arena.mpi_job_op函数的参数如下:

name,image, data和command之外,在模型训练步骤中,还需要指定:

  • name: 步骤名称
  • image: 需要使用的容器镜像
  • workers: 参与运算的worker数量
  • data: 要使用的数据以及其对应到容器内部的挂载目录, 这里的data是一个数组类型, 可以设置为data=["user-susan:/training"],表示可以挂载到多个数据。
  • env: 系统环境变量,这里的env也是数组类型,可以支持多个env; 如果不需要指定环境变量可以把env设置为[]
  • gpu: 默认为0,就是不使用GPU;如果为大于0的整数值,就代表该步骤需要这个数量的GPU数。
  • cpu_limit: cpu的资源上限
  • memory_limit: 内存的资源上限
  • metrics: 同样是从可重现和可比较的实验目的出发,用户可以将需要的一系列指标导出,并且通过Pipelines UI上直观的显示和比较。具体使用方法分为两步,1.在调用API时以数组的形式指定要收集指标的metrics name和指标的展示格式PERCENTAGE或者是RAW,比如metrics=["Train-accuracy:PERCENTAGE"]。2.由于Pipelines默认会从stdout日志中收集指标,你需要在真正运行的模型代码中输出{metrics name}={value}或者{metrics name}:{value}, 可以参考具体样例代码
  • command: 就是要提交的mpirun命令

arena中mpi_run方法的调用, 还比较直观,下面就可以定义一个Python方法。

@dsl.pipeline(
  name='pipeline to run mpi job',
  description='shows how to run mpi job.'
)
def mpirun_pipeline(image="uber/horovod:0.13.11-tf1.10.0-torch0.4.0-py3.5",
               batch_size="64",
               optimizer='momentum',
               sync_source='https://github.com/tensorflow/benchmarks.git',
               git_sync_branch='cnn_tf_v1.9_compatible',
               data='user-susan:/training',
               gpus=1,
               workers=1,
               cpu_limit='2',
               metric='images/sec',
               memory_limit='10Gi'):

@dsl.pipeline是表示工作流的装饰器,这个装饰器中需要定义两个属性,分别是namedescription

入口方法mpirun_pipeline中定义了一系列参数,由于数量较多就不在这里一一列举了。这里的参数的值实际上是 dsl.PipelineParam类型,定义成dsl.PipelineParam的目的在于可以通过Kubeflow Pipelines的原生UI可以将其转换成输入表单,表单的关键字是参数名称,而默认值为参数的值. 值得注意的是,这里的dsl.PipelineParam对应值的实际上只能是字符串和数字型;而数组和map,以及自定义类型都是无法通过转型进行变换的。

而实际上,这些参数都可以在用户提交工作流时进行覆盖,以下就是提交工作流对应的UI:

5_input

提交Pipeline

整个过程包括:

1.将Python代码编译成Pipelines执行引擎(Argo)识别的DAG文件的压缩包

准备一个python3的环境,并且安装Kubeflow Pipelines SDK

# docker run -itd --name py3 python:3  sleep infinity
# docker exec -it py3 bash

在Python3的环境下执行如下命令

# pip3 install http://kubeflow.oss-cn-beijing.aliyuncs.com/kfp/0.1.16/kfp.tar.gz --upgrade
# pip3 install http://kubeflow.oss-cn-beijing.aliyuncs.com/kfp-arena/kfp-arena-0.6.tar.gz --upgrade

# curl -O https://raw.githubusercontent.com/cheyang/pipelines/add_mpijob/samples/arena-samples/mpi/mpi_run.py
# dsl-compile --py mpi_run.py --output mpi_run.py.tar.gz

# ls -ltr | grep mpi_run
mpi_run.py.tar.gz

# exit

将该文件从容器中拷贝出来

# docker cp py3:/mpi_run.py.tar.gz .

2.将该压缩包上传到Kubeflow Pipeline的web控制台,并且将名字改为mpi_run

5_upload_pipeline

运行试验

1.在pipeline页面,点击mpi_run链接

2.点击右上角按钮Create run

3.在Start a new run的界面上填写Run name,同时选择已有或者创建相关的实验。同时按照实际情况设置运行参数,也就是Run parameters。注意,如果您没有配置数据相关的配置,请将data中的参数清空即可。点击启动即可。

5_param

查看运行结果

登录到Kubeflow Pipelines的UI: [https://{pipeline地址}/pipeline/#/experiments],查看实验结果:

5_param

点击具体Run,选择all-reduce, 并点击logs查看日志

5_logs

总结

本文介绍了如何利用Pipeline运行MPIJob,实际上这个例子并不一定严丝合缝的满足使用者的需求:

  1. arena.mpi_job_op是使用MPIJob的API,您可以根据需要自定义调用方式。
  2. def mpirun_pipeline的灵活性更是掌握在用户的手里,如何定义具体Pipeline的输入参数,也是有足够的灵活性。
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
3天前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
6天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
73 4
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
55 1
|
2月前
|
机器学习/深度学习 自然语言处理 Linux
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
68 5
|
3月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
49 2
|
3月前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
68 1
|
4月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
65 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
4月前
|
SQL 监控 大数据
通过Google Dataflow,我们能够构建一个高效、可扩展且易于维护的实时数据处理系统
【9月更文挑战第7天】随着大数据时代的到来,企业对高效数据处理的需求日益增加,特别是在实时分析和事件驱动应用中。Google Dataflow作为Google Cloud Platform的一项服务,凭借其灵活、可扩展的特点,成为实时大数据处理的首选。本文将介绍Dataflow的基本概念、优势,并通过一个电商日志分析的实际案例和示例代码,展示如何构建高效的数据处理管道。Dataflow不仅支持自动扩展和高可用性,还提供了多种编程语言支持和与GCP其他服务的紧密集成,简化了整个数据处理流程。通过Dataflow,企业可以快速响应业务需求,优化用户体验。
103 3
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2781 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
下一篇
开通oss服务