SLS机器学习最佳实战:根因分析(一)

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 通过算法,快速定位到某个宏观异常在微观粒度的具体表现形式,能够更好的帮助运营同学和运维同学分析大量异常,降低问题定位的时间。

为何需要根因分析?

当某个宏观的监控指标发生异常时,如果能快速定位到具体是那个细粒度的指标发生了异常而导致的。具体来说,当某个流量发生了异常,具体如图中所示:
1

这个指标就对应是某个小时级别的流量情况,我们要快速定位到2018-09-02 20:00:00 具体发生了什么问题而导致流量突增的?

如何在平台中分析?

  • 原始数据格式

2

在给定的LogStore中一共存在14天的各个粒度的流量数据,其中涉及的维度为 leaf=(dim1, dim2, dim3, dim4, dim5),在每个时刻,一个leaf节点有一个对应的流量值value,在相同时刻,流量对应有可加性。

  • 异常区间分析

3

我们在图中,绘制某个异常的区间,算法就会去分析从数据:[起始时刻,异常区间的右边界],遍历所有可能,找到导致该异常的集合。
4

在上图中,红色框部分,展示的所找到的候选集合中各个子元素对应的时序图,其中ds表示当前根因集合对应的整体趋势信息,其它为根因集合中对应的各个元素的时序曲线。对图中各个含义进行说明:
5

  • 具体的调用形式(仅仅事例,展示调用形式)
* not Status:200 | 
select rca_kpi_search(
 array[ ProjectName, LogStore, UserAgent, Method ],
 array[ 'ProjectName', 'LogStore', 'UserAgent', 'Method' ], real, forecast, 1) 
from ( 
select ProjectName, LogStore, UserAgent, Method,
 sum(case when time < 1552436040 then real else 0 end) * 1.0 / sum(case when time < 1552436040 
then 1 else 0 end) as forecast,
 sum(case when time >=1552436040 then real else 0 end) *1.0 / sum(case when time >= 1552436040 
then 1 else 0 end) as real
 from ( 
select __time__ - __time__ % 60 as time, ProjectName, LogStore, UserAgent, Method, COUNT(*) as real 
from log GROUP by time, ProjectName, LogStore, UserAgent, Method ) 
GROUP BY ProjectName, LogStore, UserAgent, Method limit 100000000)

使用流程

root_cause.gif


硬广时间

日志进阶

阿里云日志服务针对日志提供了完整的解决方案,以下相关功能是日志进阶的必备良药:

  1. 机器学习语法与函数: https://help.aliyun.com/document_detail/93024.html
  2. 日志上下文查询:https://help.aliyun.com/document_detail/48148.html
  3. 快速查询:https://help.aliyun.com/document_detail/88985.html
  4. 实时分析:https://help.aliyun.com/document_detail/53608.html
  5. 快速分析:https://help.aliyun.com/document_detail/66275.html
  6. 基于日志设置告警:https://help.aliyun.com/document_detail/48162.html
  7. 配置大盘:https://help.aliyun.com/document_detail/69313.html

更多日志进阶内容可以参考:日志服务学习路径


联系我们

纠错或者帮助文档以及最佳实践贡献,请联系:悟冥
问题咨询请加钉钉群:

f5d48178a8f00ad1b8e3fffc73fb9158b3f8fe10_jpeg

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
3天前
|
存储 SQL 监控
|
3天前
|
运维 监控 安全
|
7天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
29 5
|
6天前
|
监控 关系型数据库 MySQL
分析慢查询日志
【10月更文挑战第29天】分析慢查询日志
21 3
|
6天前
|
监控 关系型数据库 数据库
怎样分析慢查询日志?
【10月更文挑战第29天】怎样分析慢查询日志?
23 2
|
27天前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
41 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
1月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1611 14
|
25天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
60 2
|
25天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
47 1
|
25天前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
36 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用

相关产品

  • 日志服务