布隆过滤器原理
布隆过滤器有什么用?
布隆过滤器是可以用于判断一个元素是不是在一个集合里,并且相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。
特点:
- 巴顿.布隆于一九七零年提出
- 一个很长的二进制向量 (位数组)
- 一系列随机函数 (哈希)
- 空间效率和查询效率高:O(1)
- 有一定的误判率(哈希表是精确匹配)
实现原理
布隆过滤器(Bloom Filter)的核心实现是一个超大的位数组和几个哈希函数。假设位数组的长度为m,哈希函数的个数为k
以上图为例,具体的操作流程:假设集合里面有3个元素{x, y, z},哈希函数的个数为3(这里元素个数和哈希函数的数量没有直接关系)。
首先将位数组进行初始化,将里面每个位都设置位0。
对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。
查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素==一定==不存在集合中。反之,如果3个点都为1,则该元素==可能==存在集合中。
注意:此处不能判断该元素是否一定存在集合中,可能存在一定的==误判率==。可以从图中可以看到:假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,这是误判率存在的原因。
java代码实现
可以看下面这段代码,也可以到 https://archive.codeplex.com/?p=bloomfilter 这个地址看开源代码
import java.io.Serializable;
import java.util.BitSet;
import java.util.concurrent.atomic.AtomicInteger;
public class BloomFileter implements Serializable {
private static final long serialVersionUID = -5221305273707291280L;
private final int[] seeds;
private final int size;
private final BitSet notebook;
private final MisjudgmentRate rate;
private final AtomicInteger useCount = new AtomicInteger(0);
private final Double autoClearRate;
/**
* 默认中等程序的误判率:MisjudgmentRate.MIDDLE 以及不自动清空数据(性能会有少许提升)
*
* @param dataCount 预期处理的数据规模,如预期用于处理1百万数据的查重,这里则填写1000000
*/
public BloomFileter(int dataCount) {
this(MisjudgmentRate.MIDDLE, dataCount, null);
}
/**
* @param rate 一个枚举类型的误判率
* @param dataCount 预期处理的数据规模,如预期用于处理1百万数据的查重,这里则填写1000000
* @param autoClearRate 自动清空过滤器内部信息的使用比率,传null则表示不会自动清理,
* 当过滤器使用率达到100%时,则无论传入什么数据,都会认为在数据已经存在了
* 当希望过滤器使用率达到80%时自动清空重新使用,则传入0.8
*/
public BloomFileter(MisjudgmentRate rate, int dataCount, Double autoClearRate) {
long bitSize = rate.seeds.length * dataCount;
if (bitSize < 0 || bitSize > Integer.MAX_VALUE) {
throw new RuntimeException("位数太大溢出了,请降低误判率或者降低数据大小");
}
this.rate = rate;
seeds = rate.seeds;
size = (int) bitSize;
notebook = new BitSet(size);
this.autoClearRate = autoClearRate;
}
public void add(String data) {
checkNeedClear();
for (int i = 0; i < seeds.length; i++) {
int index = hash(data, seeds[i]);
setTrue(index);
}
}
/**
* 如果不存在就进行记录并返回false,如果存在了就返回true
*
* @param data
* @return
*/
public boolean addIfNotExist(String data) {
checkNeedClear();
int[] indexs = new int[seeds.length];
// 先假定存在
boolean exist = true;
int index;
for (int i = 0; i < seeds.length; i++) {
indexs[i] = index = hash(data, seeds[i]);
if (exist) {
if (!notebook.get(index)) {
// 只要有一个不存在,就可以认为整个字符串都是第一次出现的
exist = false;
// 补充之前的信息
for (int j = 0; j <= i; j++) {
setTrue(indexs[j]);
}
}
} else {
setTrue(index);
}
}
return exist;
}
private void checkNeedClear() {
if (autoClearRate != null) {
if (getUseRate() >= autoClearRate) {
synchronized (this) {
if (getUseRate() >= autoClearRate) {
notebook.clear();
useCount.set(0);
}
}
}
}
}
public void setTrue(int index) {
useCount.incrementAndGet();
notebook.set(index, true);
}
private int hash(String data, int seeds) {
char[] value = data.toCharArray();
int hash = 0;
if (value.length > 0) {
for (int i = 0; i < value.length; i++) {
hash = i * hash + value[i];
}
}
hash = hash * seeds % size;
// 防止溢出变成负数
return Math.abs(hash);
}
public double getUseRate() {
return (double) useCount.intValue() / (double) size;
}
/**
* 分配的位数越多,误判率越低但是越占内存
* <p>
* 4个位误判率大概是0.14689159766308
* <p>
* 8个位误判率大概是0.02157714146322
* <p>
* 16个位误判率大概是0.00046557303372
* <p>
* 32个位误判率大概是0.00000021167340
*
* @author lianghaohui
*/
public enum MisjudgmentRate {
// 这里要选取质数,能很好的降低错误率
/**
* 每个字符串分配4个位
*/
VERY_SMALL(new int[]{2, 3, 5, 7}),
/**
* 每个字符串分配8个位
*/
SMALL(new int[]{2, 3, 5, 7, 11, 13, 17, 19}), //
/**
* 每个字符串分配16个位
*/
MIDDLE(new int[]{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53}), //
/**
* 每个字符串分配32个位
*/
HIGH(new int[]{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131});
private int[] seeds;
private MisjudgmentRate(int[] seeds) {
this.seeds = seeds;
}
public int[] getSeeds() {
return seeds;
}
public void setSeeds(int[] seeds) {
this.seeds = seeds;
}
}
public static void main(String[] args) {
BloomFileter fileter = new BloomFileter(7);
System.out.println(fileter.addIfNotExist("1111111111111"));
System.out.println(fileter.addIfNotExist("2222222222222222"));
System.out.println(fileter.addIfNotExist("3333333333333333"));
System.out.println(fileter.addIfNotExist("444444444444444"));
System.out.println(fileter.addIfNotExist("5555555555555"));
System.out.println(fileter.addIfNotExist("6666666666666"));
System.out.println(fileter.addIfNotExist("1111111111111"));
}
}
错误率估算
纯数学算法推导,公式参见:布隆过滤器 (Bloom Filter) 详解
下面给出一个直观的图:
- m:存储比特位的数组长度(数组长度越长,元素越小,则误判几率越低)注意:m必须>n,不然当只有一个哈希函数的时候都一定会出现hash冲突
- n:需要存储转换的元素的个数
- K:把元素M映射在数组上哪一位为1的哈希函数的个数。 K要 <= m/n