Spark2.4.0源码分析之WorldCount Stage提交顺序(DAGScheduler)(五)

简介: 理解FinalStage是如何按stage从前到后依次提交顺序

Spark2.4.0源码分析之WorldCount Stage提交顺序(DAGScheduler)(五)

更多资源

时序图

主要内容描述

  • 理解FinalStage是如何按stage从前到后依次提交顺序
).FinalStage(Stage0) -> Stage1 -> Stage2 -> Stage3
).Stage0的parents stage是Stage1,Stage1的parents stage是Stage2,Stage2的parents stage是Stage3
).Stage提交的顺序是,先提交最顶上的Stage(Stage3),等Stage3计算完成后,再提交Stage2,等Stage2计算完成后,再提交Stage1,等Stage1计算完成后,再提交Stage0
).所以Stage的计算顺序是:依次从最顶级Stage开始提交,等待该Stage计算完成后,再依次提交该Stage的直接下级Stage

源码分析

DAGScheduler.submitStage

  • DAGScheduler.handleJobSubmitted()处理作业提交事件,计算完成FinalStage后,调用函数DAGScheduler.submitStage(FinalStage)
  • Stage的提交计算逻辑

    • 首先拿到FinalStage进行判断,判断该Stage是不是已经处理过,如果已经处理过,就不会再次提交
    • 如果FinalStage是第一次提交过来,就调用函数DAGScheduler.getMissingParentStages(Stage),找到当前Stage的上级没有被处理过的Stage(即parent Stage)
    • parent stage 为空,就可以提交当前Stage,parent stage不为空,就先提交parent stage
    • FinalStage(ResultStage) 的 parent stage为ShuffleMapStage,此时parent stage 不为空,所以先调用DAGScheduler.submitStage(parent)函数,即DAGScheduler.submitStage(ShuffleMapStage),submitStage函数中自己调自己
    • submitStage(ShuffleMapStage)此时,ShuffleMapStage的parent stage 为Nil,所以为空,这一次就可以调用函数DAGScheduler.submitMissingTasks(ShuffleMapStage),这个函数会去真正的提交Stage,ShuffleMapStage提交完成后,把ResultStage加到waitingStages中(等待提交的Stage)
    • 注意,虽然submitStage()这个函数在此时,已调用了两次,其实只干了这一件事DAGScheduler.submitMissingTasks(ShuffleMapStage),处理了ShuffleMapStage,FinalStage此时是没有提交的,那FinalStage是什么时候提交的了?接着看下面
/** Submits stage, but first recursively submits any missing parents. */
  private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing.isEmpty) {
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          submitMissingTasks(stage, jobId.get)
        } else {
          for (parent <- missing) {
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id, None)
    }
  }

DagScheduler.handleTaskCompletion(completion)

  • 每个任务完成后,都会触发事件completion: CompletionEvent,DAGSchedulerEventProcessLoop.doOnReceive()函数会调用DagScheduler.handleTaskCompletion(completion)函数进行处理
  • 这个函数比较长,但是关注重点就好理解了
  • ShufleMapStage是可以划分成多个任务的,ShufleMapStage划分的任务数n,也就是每个ShuffleMapTask完成后,都会调用这个函数进行处理,当n个ShuffleMapTask全部完成后,才会触发提交ShuffleMapStage的直接下级Stage,也就是ResultStage
  • task match 当是ShuffleMapTask时,ShuffleMapStage中的变量pendingPartitions记录着ShuffleMapStage中所有的任务对应的partitionId,也就是有多少个ShuffleMapTask任务就有多少个分区,每完成一个任务,把当前任务对应的partitionsId移除,当pendingPartitions为空时,说明所有的任务全部完成了,就可以进行下级Stage的操作了
  • 当ShuffleMapStage中所有的ShuffleMapTask完成后,就会调用函数DagScheduler.submitWaitingChildStages(shuffleStage),注意,此时的参数是ShuffleMapStage
/**
   * Responds to a task finishing. This is called inside the event loop so it assumes that it can
   * modify the scheduler's internal state. Use taskEnded() to post a task end event from outside.
   */
  private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
    val task = event.task
    val stageId = task.stageId

    outputCommitCoordinator.taskCompleted(
      stageId,
      task.stageAttemptId,
      task.partitionId,
      event.taskInfo.attemptNumber, // this is a task attempt number
      event.reason)

    if (!stageIdToStage.contains(task.stageId)) {
      // The stage may have already finished when we get this event -- eg. maybe it was a
      // speculative task. It is important that we send the TaskEnd event in any case, so listeners
      // are properly notified and can chose to handle it. For instance, some listeners are
      // doing their own accounting and if they don't get the task end event they think
      // tasks are still running when they really aren't.
      postTaskEnd(event)

      // Skip all the actions if the stage has been cancelled.
      return
    }

    val stage = stageIdToStage(task.stageId)

    // Make sure the task's accumulators are updated before any other processing happens, so that
    // we can post a task end event before any jobs or stages are updated. The accumulators are
    // only updated in certain cases.
    event.reason match {
      case Success =>
        task match {
          case rt: ResultTask[_, _] =>
            val resultStage = stage.asInstanceOf[ResultStage]
            resultStage.activeJob match {
              case Some(job) =>
                // Only update the accumulator once for each result task.
                if (!job.finished(rt.outputId)) {
                  updateAccumulators(event)
                }
              case None => // Ignore update if task's job has finished.
            }
          case _ =>
            updateAccumulators(event)
        }
      case _: ExceptionFailure | _: TaskKilled => updateAccumulators(event)
      case _ =>
    }
    postTaskEnd(event)

    event.reason match {
      case Success =>
        task match {
          case rt: ResultTask[_, _] =>
            // Cast to ResultStage here because it's part of the ResultTask
            // TODO Refactor this out to a function that accepts a ResultStage
            val resultStage = stage.asInstanceOf[ResultStage]
            resultStage.activeJob match {
              case Some(job) =>
                if (!job.finished(rt.outputId)) {
                  job.finished(rt.outputId) = true
                  job.numFinished += 1
                  // If the whole job has finished, remove it
                  if (job.numFinished == job.numPartitions) {
                    markStageAsFinished(resultStage)
                    cleanupStateForJobAndIndependentStages(job)
                    listenerBus.post(
                      SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
                  }

                  // taskSucceeded runs some user code that might throw an exception. Make sure
                  // we are resilient against that.
                  try {
                    job.listener.taskSucceeded(rt.outputId, event.result)
                  } catch {
                    case e: Exception =>
                      // TODO: Perhaps we want to mark the resultStage as failed?
                      job.listener.jobFailed(new SparkDriverExecutionException(e))
                  }
                }
              case None =>
                logInfo("Ignoring result from " + rt + " because its job has finished")
            }

          case smt: ShuffleMapTask =>
            val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
            shuffleStage.pendingPartitions -= task.partitionId
            val status = event.result.asInstanceOf[MapStatus]
            val execId = status.location.executorId
            logDebug("ShuffleMapTask finished on " + execId)
            if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
              logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
            } else {
              // The epoch of the task is acceptable (i.e., the task was launched after the most
              // recent failure we're aware of for the executor), so mark the task's output as
              // available.
              mapOutputTracker.registerMapOutput(
                shuffleStage.shuffleDep.shuffleId, smt.partitionId, status)
            }

            if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
              markStageAsFinished(shuffleStage)
              logInfo("looking for newly runnable stages")
              logInfo("running: " + runningStages)
              logInfo("waiting: " + waitingStages)
              logInfo("failed: " + failedStages)

              // This call to increment the epoch may not be strictly necessary, but it is retained
              // for now in order to minimize the changes in behavior from an earlier version of the
              // code. This existing behavior of always incrementing the epoch following any
              // successful shuffle map stage completion may have benefits by causing unneeded
              // cached map outputs to be cleaned up earlier on executors. In the future we can
              // consider removing this call, but this will require some extra investigation.
              // See https://github.com/apache/spark/pull/17955/files#r117385673 for more details.
              mapOutputTracker.incrementEpoch()

              clearCacheLocs()

              if (!shuffleStage.isAvailable) {
                // Some tasks had failed; let's resubmit this shuffleStage.
                // TODO: Lower-level scheduler should also deal with this
                logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +
                  ") because some of its tasks had failed: " +
                  shuffleStage.findMissingPartitions().mkString(", "))
                submitStage(shuffleStage)
              } else {
                markMapStageJobsAsFinished(shuffleStage)
                submitWaitingChildStages(shuffleStage)
              }
            }
        }

      case FetchFailed(bmAddress, shuffleId, mapId, _, failureMessage) =>
        val failedStage = stageIdToStage(task.stageId)
        val mapStage = shuffleIdToMapStage(shuffleId)

        if (failedStage.latestInfo.attemptNumber != task.stageAttemptId) {
          logInfo(s"Ignoring fetch failure from $task as it's from $failedStage attempt" +
            s" ${task.stageAttemptId} and there is a more recent attempt for that stage " +
            s"(attempt ${failedStage.latestInfo.attemptNumber}) running")
        } else {
          failedStage.failedAttemptIds.add(task.stageAttemptId)
          val shouldAbortStage =
            failedStage.failedAttemptIds.size >= maxConsecutiveStageAttempts ||
            disallowStageRetryForTest

          // It is likely that we receive multiple FetchFailed for a single stage (because we have
          // multiple tasks running concurrently on different executors). In that case, it is
          // possible the fetch failure has already been handled by the scheduler.
          if (runningStages.contains(failedStage)) {
            logInfo(s"Marking $failedStage (${failedStage.name}) as failed " +
              s"due to a fetch failure from $mapStage (${mapStage.name})")
            markStageAsFinished(failedStage, errorMessage = Some(failureMessage),
              willRetry = !shouldAbortStage)
          } else {
            logDebug(s"Received fetch failure from $task, but its from $failedStage which is no " +
              s"longer running")
          }

          if (mapStage.rdd.isBarrier()) {
            // Mark all the map as broken in the map stage, to ensure retry all the tasks on
            // resubmitted stage attempt.
            mapOutputTracker.unregisterAllMapOutput(shuffleId)
          } else if (mapId != -1) {
            // Mark the map whose fetch failed as broken in the map stage
            mapOutputTracker.unregisterMapOutput(shuffleId, mapId, bmAddress)
          }

          if (failedStage.rdd.isBarrier()) {
            failedStage match {
              case failedMapStage: ShuffleMapStage =>
                // Mark all the map as broken in the map stage, to ensure retry all the tasks on
                // resubmitted stage attempt.
                mapOutputTracker.unregisterAllMapOutput(failedMapStage.shuffleDep.shuffleId)

              case failedResultStage: ResultStage =>
                // Abort the failed result stage since we may have committed output for some
                // partitions.
                val reason = "Could not recover from a failed barrier ResultStage. Most recent " +
                  s"failure reason: $failureMessage"
                abortStage(failedResultStage, reason, None)
            }
          }

          if (shouldAbortStage) {
            val abortMessage = if (disallowStageRetryForTest) {
              "Fetch failure will not retry stage due to testing config"
            } else {
              s"""$failedStage (${failedStage.name})
                 |has failed the maximum allowable number of
                 |times: $maxConsecutiveStageAttempts.
                 |Most recent failure reason: $failureMessage""".stripMargin.replaceAll("\n", " ")
            }
            abortStage(failedStage, abortMessage, None)
          } else { // update failedStages and make sure a ResubmitFailedStages event is enqueued
            // TODO: Cancel running tasks in the failed stage -- cf. SPARK-17064
            val noResubmitEnqueued = !failedStages.contains(failedStage)
            failedStages += failedStage
            failedStages += mapStage
            if (noResubmitEnqueued) {
              // If the map stage is INDETERMINATE, which means the map tasks may return
              // different result when re-try, we need to re-try all the tasks of the failed
              // stage and its succeeding stages, because the input data will be changed after the
              // map tasks are re-tried.
              // Note that, if map stage is UNORDERED, we are fine. The shuffle partitioner is
              // guaranteed to be determinate, so the input data of the reducers will not change
              // even if the map tasks are re-tried.
              if (mapStage.rdd.outputDeterministicLevel == DeterministicLevel.INDETERMINATE) {
                // It's a little tricky to find all the succeeding stages of `failedStage`, because
                // each stage only know its parents not children. Here we traverse the stages from
                // the leaf nodes (the result stages of active jobs), and rollback all the stages
                // in the stage chains that connect to the `failedStage`. To speed up the stage
                // traversing, we collect the stages to rollback first. If a stage needs to
                // rollback, all its succeeding stages need to rollback to.
                val stagesToRollback = scala.collection.mutable.HashSet(failedStage)

                def collectStagesToRollback(stageChain: List[Stage]): Unit = {
                  if (stagesToRollback.contains(stageChain.head)) {
                    stageChain.drop(1).foreach(s => stagesToRollback += s)
                  } else {
                    stageChain.head.parents.foreach { s =>
                      collectStagesToRollback(s :: stageChain)
                    }
                  }
                }

                def generateErrorMessage(stage: Stage): String = {
                  "A shuffle map stage with indeterminate output was failed and retried. " +
                    s"However, Spark cannot rollback the $stage to re-process the input data, " +
                    "and has to fail this job. Please eliminate the indeterminacy by " +
                    "checkpointing the RDD before repartition and try again."
                }

                activeJobs.foreach(job => collectStagesToRollback(job.finalStage :: Nil))

                stagesToRollback.foreach {
                  case mapStage: ShuffleMapStage =>
                    val numMissingPartitions = mapStage.findMissingPartitions().length
                    if (numMissingPartitions < mapStage.numTasks) {
                      // TODO: support to rollback shuffle files.
                      // Currently the shuffle writing is "first write wins", so we can't re-run a
                      // shuffle map stage and overwrite existing shuffle files. We have to finish
                      // SPARK-8029 first.
                      abortStage(mapStage, generateErrorMessage(mapStage), None)
                    }

                  case resultStage: ResultStage if resultStage.activeJob.isDefined =>
                    val numMissingPartitions = resultStage.findMissingPartitions().length
                    if (numMissingPartitions < resultStage.numTasks) {
                      // TODO: support to rollback result tasks.
                      abortStage(resultStage, generateErrorMessage(resultStage), None)
                    }

                  case _ =>
                }
              }

              // We expect one executor failure to trigger many FetchFailures in rapid succession,
              // but all of those task failures can typically be handled by a single resubmission of
              // the failed stage.  We avoid flooding the scheduler's event queue with resubmit
              // messages by checking whether a resubmit is already in the event queue for the
              // failed stage.  If there is already a resubmit enqueued for a different failed
              // stage, that event would also be sufficient to handle the current failed stage, but
              // producing a resubmit for each failed stage makes debugging and logging a little
              // simpler while not producing an overwhelming number of scheduler events.
              logInfo(
                s"Resubmitting $mapStage (${mapStage.name}) and " +
                  s"$failedStage (${failedStage.name}) due to fetch failure"
              )
              messageScheduler.schedule(
                new Runnable {
                  override def run(): Unit = eventProcessLoop.post(ResubmitFailedStages)
                },
                DAGScheduler.RESUBMIT_TIMEOUT,
                TimeUnit.MILLISECONDS
              )
            }
          }

          // TODO: mark the executor as failed only if there were lots of fetch failures on it
          if (bmAddress != null) {
            val hostToUnregisterOutputs = if (env.blockManager.externalShuffleServiceEnabled &&
              unRegisterOutputOnHostOnFetchFailure) {
              // We had a fetch failure with the external shuffle service, so we
              // assume all shuffle data on the node is bad.
              Some(bmAddress.host)
            } else {
              // Unregister shuffle data just for one executor (we don't have any
              // reason to believe shuffle data has been lost for the entire host).
              None
            }
            removeExecutorAndUnregisterOutputs(
              execId = bmAddress.executorId,
              fileLost = true,
              hostToUnregisterOutputs = hostToUnregisterOutputs,
              maybeEpoch = Some(task.epoch))
          }
        }

      case failure: TaskFailedReason if task.isBarrier =>
        // Also handle the task failed reasons here.
        failure match {
          case Resubmitted =>
            handleResubmittedFailure(task, stage)

          case _ => // Do nothing.
        }

        // Always fail the current stage and retry all the tasks when a barrier task fail.
        val failedStage = stageIdToStage(task.stageId)
        if (failedStage.latestInfo.attemptNumber != task.stageAttemptId) {
          logInfo(s"Ignoring task failure from $task as it's from $failedStage attempt" +
            s" ${task.stageAttemptId} and there is a more recent attempt for that stage " +
            s"(attempt ${failedStage.latestInfo.attemptNumber}) running")
        } else {
          logInfo(s"Marking $failedStage (${failedStage.name}) as failed due to a barrier task " +
            "failed.")
          val message = s"Stage failed because barrier task $task finished unsuccessfully.\n" +
            failure.toErrorString
          try {
            // killAllTaskAttempts will fail if a SchedulerBackend does not implement killTask.
            val reason = s"Task $task from barrier stage $failedStage (${failedStage.name}) " +
              "failed."
            taskScheduler.killAllTaskAttempts(stageId, interruptThread = false, reason)
          } catch {
            case e: UnsupportedOperationException =>
              // Cannot continue with barrier stage if failed to cancel zombie barrier tasks.
              // TODO SPARK-24877 leave the zombie tasks and ignore their completion events.
              logWarning(s"Could not kill all tasks for stage $stageId", e)
              abortStage(failedStage, "Could not kill zombie barrier tasks for stage " +
                s"$failedStage (${failedStage.name})", Some(e))
          }
          markStageAsFinished(failedStage, Some(message))

          failedStage.failedAttemptIds.add(task.stageAttemptId)
          // TODO Refactor the failure handling logic to combine similar code with that of
          // FetchFailed.
          val shouldAbortStage =
            failedStage.failedAttemptIds.size >= maxConsecutiveStageAttempts ||
              disallowStageRetryForTest

          if (shouldAbortStage) {
            val abortMessage = if (disallowStageRetryForTest) {
              "Barrier stage will not retry stage due to testing config. Most recent failure " +
                s"reason: $message"
            } else {
              s"""$failedStage (${failedStage.name})
                 |has failed the maximum allowable number of
                 |times: $maxConsecutiveStageAttempts.
                 |Most recent failure reason: $message
               """.stripMargin.replaceAll("\n", " ")
            }
            abortStage(failedStage, abortMessage, None)
          } else {
            failedStage match {
              case failedMapStage: ShuffleMapStage =>
                // Mark all the map as broken in the map stage, to ensure retry all the tasks on
                // resubmitted stage attempt.
                mapOutputTracker.unregisterAllMapOutput(failedMapStage.shuffleDep.shuffleId)

              case failedResultStage: ResultStage =>
                // Abort the failed result stage since we may have committed output for some
                // partitions.
                val reason = "Could not recover from a failed barrier ResultStage. Most recent " +
                  s"failure reason: $message"
                abortStage(failedResultStage, reason, None)
            }
            // In case multiple task failures triggered for a single stage attempt, ensure we only
            // resubmit the failed stage once.
            val noResubmitEnqueued = !failedStages.contains(failedStage)
            failedStages += failedStage
            if (noResubmitEnqueued) {
              logInfo(s"Resubmitting $failedStage (${failedStage.name}) due to barrier stage " +
                "failure.")
              messageScheduler.schedule(new Runnable {
                override def run(): Unit = eventProcessLoop.post(ResubmitFailedStages)
              }, DAGScheduler.RESUBMIT_TIMEOUT, TimeUnit.MILLISECONDS)
            }
          }
        }

      case Resubmitted =>
        handleResubmittedFailure(task, stage)

      case _: TaskCommitDenied =>
        // Do nothing here, left up to the TaskScheduler to decide how to handle denied commits

      case _: ExceptionFailure | _: TaskKilled =>
        // Nothing left to do, already handled above for accumulator updates.

      case TaskResultLost =>
        // Do nothing here; the TaskScheduler handles these failures and resubmits the task.

      case _: ExecutorLostFailure | UnknownReason =>
        // Unrecognized failure - also do nothing. If the task fails repeatedly, the TaskScheduler
        // will abort the job.
    }
  }

DagScheduler.submitWaitingChildStages(shuffleStage)

  • waitingStages中存的是所有待提交的Stage,过滤出,ShuffleMapStage的直接下级Stage,然后调用DagScheduler.submitStage(stage)进行提交,此时相当于DagScheduler.submitStage(ResultStage)
  • 注意,此时由于ResultStage的parent stage 是ShuffleMapStage已经计算完成了,所以DagScheduler.getMissingParentStages 计算ResultStage的上级stage时,会为Nil,也就是为空,所以此时就提交ResultStage
  /**
   * Check for waiting stages which are now eligible for resubmission.
   * Submits stages that depend on the given parent stage. Called when the parent stage completes
   * successfully.
   */
  private def submitWaitingChildStages(parent: Stage) {
    logTrace(s"Checking if any dependencies of $parent are now runnable")
    logTrace("running: " + runningStages)
    logTrace("waiting: " + waitingStages)
    logTrace("failed: " + failedStages)
    val childStages = waitingStages.filter(_.parents.contains(parent)).toArray
    waitingStages --= childStages
    for (stage <- childStages.sortBy(_.firstJobId)) {
      submitStage(stage)
    }
  }

DagScheduler.getMissingParentStages(Stage)

  • 计算Stage的待提交上级Stage,如果上级Stage的所有任务已经完成,上级待提交Stage为空,就可以直接提交Stage
  • 如果Stage上级Stage没有处理,就需要先提交上级Stage
  • 如果上级Stage已提交,在if判断就进不来,waitingStages,runningStages,failedStages会记录已处理过的Stage
  • 判断上级Stage是否可用的关键点

    • stage.isAvailable返回true,所以这个时候!mapStage.isAvailable就不满足条件,就不会把mapStage加到missing中(就不会加到待提交的上级Stage中)
    • 这个时候就可以提交ResultStage了
private def getMissingParentStages(stage: Stage): List[Stage] = {
    val missing = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    // We are manually maintaining a stack here to prevent StackOverflowError
    // caused by recursively visiting
    val waitingForVisit = new ArrayStack[RDD[_]]
    def visit(rdd: RDD[_]) {
      if (!visited(rdd)) {
        visited += rdd
        val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
        if (rddHasUncachedPartitions) {
          for (dep <- rdd.dependencies) {
            dep match {
              case shufDep: ShuffleDependency[_, _, _] =>
                val mapStage = getOrCreateShuffleMapStage(shufDep, stage.firstJobId)
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
              case narrowDep: NarrowDependency[_] =>
                waitingForVisit.push(narrowDep.rdd)
            }
          }
        }
      }
    }
    waitingForVisit.push(stage.rdd)
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }
    missing.toList
  }

ShuffleMapStage.isAvailable

  • numAvailableOutputs记录已完成的ShuffleMapStage任务数(已完成的ShufleMapTask个数)
  • numPartitions,ShuffleMapStage的分区个数
  • 如果这两个参数相等,相当于,ShuffleMapStage所有的ShuffleMapTask已经计算完成了

/**
   * Number of partitions that have shuffle outputs.
   * When this reaches [[numPartitions]], this map stage is ready.
   */
  def numAvailableOutputs: Int = mapOutputTrackerMaster.getNumAvailableOutputs(shuffleDep.shuffleId)
  
  
/**
   * Returns true if the map stage is ready, i.e. all partitions have shuffle outputs.
   */
  def isAvailable: Boolean = numAvailableOutputs == numPartitions

end

相关文章
|
8月前
|
SQL 分布式计算 HIVE
[已解决]Job failed with org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in st
[已解决]Job failed with org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in st
395 0
|
存储 分布式计算 大数据
Spark 原理_运行过程_stage 和 task 的关系 | 学习笔记
快速学习 Spark 原理_运行过程_stage 和 task 的关系
222 0
Spark 原理_运行过程_stage 和 task 的关系 | 学习笔记
|
分布式计算 大数据 调度
Spark 原理_运行过程_Job 和 Stage 的关系 | 学习笔记
快速学习 Spark 原理_运行过程_Job 和 Stage 的关系
178 0
Spark 原理_运行过程_Job 和 Stage 的关系 | 学习笔记
|
分布式计算 大数据 Spark
Spark 原理_物理图_Stage 划分 | 学习笔记
快速学习 Spark 原理_物理图_Stage 划分
142 0
Spark 原理_物理图_Stage 划分 | 学习笔记
|
分布式计算 调度 Spark
Spark作业调度中stage的划分
Spark在接收到提交的作业后,会进行RDD依赖分析并划分成多个stage,以stage为单位生成taskset并提交调度。
Spark作业调度中stage的划分
|
机器学习/深度学习 分布式计算 算法
Apache Spark 将支持 Stage 级别的资源控制和调度
我们需要对不同 Stage 设置不同的资源。但是目前的 Spark 不支持这种细粒度的资源配置,导致我们不得不在作业启动的时候设置大量的资源,从而导致资源可能浪费,特别是在机器学习的场景下。
Apache Spark 将支持 Stage 级别的资源控制和调度
|
Apache 分布式计算 Spark
Apache Spark Delta Lake 事务日志实现源码分析
Apache Spark Delta Lake 事务日志实现源码分析 我们已经在这篇文章详细介绍了 Apache Spark Delta Lake 的事务日志是什么、主要用途以及如何工作的。那篇文章已经可以很好地给大家介绍 Delta Lake 的内部工作原理,原子性保证,本文为了学习的目的,带领大家从源码级别来看看 Delta Lake 事务日志的实现。
2052 0
|
分布式计算 Java Shell
Spark源码分析之Spark Shell(上)
终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧。不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的。另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口。
943 0
Spark2.4.0源码分析之WorldCount 默认shuffling并行度为200(九)
Spark2.4.0源码分析之WorldCount 默认shuffling并行度为200(九)
1296 0
|
分布式计算 Spark 索引
Spark2.4.0源码分析之WorldCount ShuffleMapTask处理(八)
- 理解Executor中是如何调用Task的过程 - 理解ShuffleMapTask是处理过程
1632 0