murmur3哈希算法

简介: murmur3哈希算法 murmur3非加密哈希算法 murmur3非加密哈希算法导图 据算法作者Austin Appleby描述,有c1, c2, n 三个常量用大量测试数据调测出来的,可以对数值进行微调。

murmur3哈希算法

murmur3非加密哈希算法

murmur3_

murmur3非加密哈希算法导图

murmur3__

据算法作者Austin Appleby描述,有c1, c2, n 三个常量用大量测试数据调测出来的,可以对数值进行微调。

murmur3哈希算法实现

//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.

// Note - The x86 and x64 versions do _not_ produce the same results, as the
// algorithms are optimized for their respective platforms. You can still
// compile and run any of them on any platform, but your performance with the
// non-native version will be less than optimal.

#include "MurmurHash3.h"

//-----------------------------------------------------------------------------
// Platform-specific functions and macros

// Microsoft Visual Studio

#if defined(_MSC_VER)

#define FORCE_INLINE    __forceinline

#include <stdlib.h>

#define ROTL32(x,y)    _rotl(x,y)
#define ROTL64(x,y)    _rotl64(x,y)

#define BIG_CONSTANT(x) (x)

// Other compilers

#else    // defined(_MSC_VER)

#define    FORCE_INLINE inline __attribute__((always_inline))

inline uint32_t rotl32 ( uint32_t x, int8_t r )
{
  return (x << r) | (x >> (32 - r));
}

inline uint64_t rotl64 ( uint64_t x, int8_t r )
{
  return (x << r) | (x >> (64 - r));
}

#define    ROTL32(x,y)    rotl32(x,y)
#define ROTL64(x,y)    rotl64(x,y)

#define BIG_CONSTANT(x) (x##LLU)

#endif // !defined(_MSC_VER)

//-----------------------------------------------------------------------------
// Block read - if your platform needs to do endian-swapping or can only
// handle aligned reads, do the conversion here

FORCE_INLINE uint32_t getblock32 ( const uint32_t * p, int i )
{
  return p[i];
}

FORCE_INLINE uint64_t getblock64 ( const uint64_t * p, int i )
{
  return p[i];
}

//-----------------------------------------------------------------------------
// Finalization mix - force all bits of a hash block to avalanche

FORCE_INLINE uint32_t fmix32 ( uint32_t h )
{
  h ^= h >> 16;
  h *= 0x85ebca6b;
  h ^= h >> 13;
  h *= 0xc2b2ae35;
  h ^= h >> 16;

  return h;
}

//----------

FORCE_INLINE uint64_t fmix64 ( uint64_t k )
{
  k ^= k >> 33;
  k *= BIG_CONSTANT(0xff51afd7ed558ccd);
  k ^= k >> 33;
  k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
  k ^= k >> 33;

  return k;
}

//-----------------------------------------------------------------------------

void MurmurHash3_x86_32 ( const void * key, int len,
                          uint32_t seed, void * out )
{
  const uint8_t * data = (const uint8_t*)key;
  const int nblocks = len / 4;

  uint32_t h1 = seed;

  const uint32_t c1 = 0xcc9e2d51;
  const uint32_t c2 = 0x1b873593;

  //----------
  // body

  const uint32_t * blocks = (const uint32_t *)(data + nblocks*4);

  for(int i = -nblocks; i; i++)
  {
    uint32_t k1 = getblock32(blocks,i);

    k1 *= c1;
    k1 = ROTL32(k1,15);
    k1 *= c2;
    
    h1 ^= k1;
    h1 = ROTL32(h1,13); 
    h1 = h1*5+0xe6546b64;
  }

  //----------
  // tail

  const uint8_t * tail = (const uint8_t*)(data + nblocks*4);

  uint32_t k1 = 0;

  switch(len & 3)
  {
  case 3: k1 ^= tail[2] << 16;
  case 2: k1 ^= tail[1] << 8;
  case 1: k1 ^= tail[0];
          k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
  };

  //----------
  // finalization

  h1 ^= len;

  h1 = fmix32(h1);

  *(uint32_t*)out = h1;
} 

//-----------------------------------------------------------------------------

void MurmurHash3_x86_128 ( const void * key, const int len,
                           uint32_t seed, void * out )
{
  const uint8_t * data = (const uint8_t*)key;
  const int nblocks = len / 16;

  uint32_t h1 = seed;
  uint32_t h2 = seed;
  uint32_t h3 = seed;
  uint32_t h4 = seed;

  const uint32_t c1 = 0x239b961b; 
  const uint32_t c2 = 0xab0e9789;
  const uint32_t c3 = 0x38b34ae5; 
  const uint32_t c4 = 0xa1e38b93;

  //----------
  // body

  const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);

  for(int i = -nblocks; i; i++)
  {
    uint32_t k1 = getblock32(blocks,i*4+0);
    uint32_t k2 = getblock32(blocks,i*4+1);
    uint32_t k3 = getblock32(blocks,i*4+2);
    uint32_t k4 = getblock32(blocks,i*4+3);

    k1 *= c1; k1  = ROTL32(k1,15); k1 *= c2; h1 ^= k1;

    h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;

    k2 *= c2; k2  = ROTL32(k2,16); k2 *= c3; h2 ^= k2;

    h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;

    k3 *= c3; k3  = ROTL32(k3,17); k3 *= c4; h3 ^= k3;

    h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;

    k4 *= c4; k4  = ROTL32(k4,18); k4 *= c1; h4 ^= k4;

    h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
  }

  //----------
  // tail

  const uint8_t * tail = (const uint8_t*)(data + nblocks*16);

  uint32_t k1 = 0;
  uint32_t k2 = 0;
  uint32_t k3 = 0;
  uint32_t k4 = 0;

  switch(len & 15)
  {
  case 15: k4 ^= tail[14] << 16;
  case 14: k4 ^= tail[13] << 8;
  case 13: k4 ^= tail[12] << 0;
           k4 *= c4; k4  = ROTL32(k4,18); k4 *= c1; h4 ^= k4;

  case 12: k3 ^= tail[11] << 24;
  case 11: k3 ^= tail[10] << 16;
  case 10: k3 ^= tail[ 9] << 8;
  case  9: k3 ^= tail[ 8] << 0;
           k3 *= c3; k3  = ROTL32(k3,17); k3 *= c4; h3 ^= k3;

  case  8: k2 ^= tail[ 7] << 24;
  case  7: k2 ^= tail[ 6] << 16;
  case  6: k2 ^= tail[ 5] << 8;
  case  5: k2 ^= tail[ 4] << 0;
           k2 *= c2; k2  = ROTL32(k2,16); k2 *= c3; h2 ^= k2;

  case  4: k1 ^= tail[ 3] << 24;
  case  3: k1 ^= tail[ 2] << 16;
  case  2: k1 ^= tail[ 1] << 8;
  case  1: k1 ^= tail[ 0] << 0;
           k1 *= c1; k1  = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
  };

  //----------
  // finalization

  h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;

  h1 += h2; h1 += h3; h1 += h4;
  h2 += h1; h3 += h1; h4 += h1;

  h1 = fmix32(h1);
  h2 = fmix32(h2);
  h3 = fmix32(h3);
  h4 = fmix32(h4);

  h1 += h2; h1 += h3; h1 += h4;
  h2 += h1; h3 += h1; h4 += h1;

  ((uint32_t*)out)[0] = h1;
  ((uint32_t*)out)[1] = h2;
  ((uint32_t*)out)[2] = h3;
  ((uint32_t*)out)[3] = h4;
}

//-----------------------------------------------------------------------------

void MurmurHash3_x64_128 ( const void * key, const int len,
                           const uint32_t seed, void * out )
{
  const uint8_t * data = (const uint8_t*)key;
  const int nblocks = len / 16;

  uint64_t h1 = seed;
  uint64_t h2 = seed;

  const uint64_t c1 = BIG_CONSTANT(0x87c37b91114253d5);
  const uint64_t c2 = BIG_CONSTANT(0x4cf5ad432745937f);

  //----------
  // body

  const uint64_t * blocks = (const uint64_t *)(data);

  for(int i = 0; i < nblocks; i++)
  {
    uint64_t k1 = getblock64(blocks,i*2+0);
    uint64_t k2 = getblock64(blocks,i*2+1);

    k1 *= c1; k1  = ROTL64(k1,31); k1 *= c2; h1 ^= k1;

    h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;

    k2 *= c2; k2  = ROTL64(k2,33); k2 *= c1; h2 ^= k2;

    h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
  }

  //----------
  // tail

  const uint8_t * tail = (const uint8_t*)(data + nblocks*16);

  uint64_t k1 = 0;
  uint64_t k2 = 0;

  switch(len & 15)
  {
  case 15: k2 ^= ((uint64_t)tail[14]) << 48;
  case 14: k2 ^= ((uint64_t)tail[13]) << 40;
  case 13: k2 ^= ((uint64_t)tail[12]) << 32;
  case 12: k2 ^= ((uint64_t)tail[11]) << 24;
  case 11: k2 ^= ((uint64_t)tail[10]) << 16;
  case 10: k2 ^= ((uint64_t)tail[ 9]) << 8;
  case  9: k2 ^= ((uint64_t)tail[ 8]) << 0;
           k2 *= c2; k2  = ROTL64(k2,33); k2 *= c1; h2 ^= k2;

  case  8: k1 ^= ((uint64_t)tail[ 7]) << 56;
  case  7: k1 ^= ((uint64_t)tail[ 6]) << 48;
  case  6: k1 ^= ((uint64_t)tail[ 5]) << 40;
  case  5: k1 ^= ((uint64_t)tail[ 4]) << 32;
  case  4: k1 ^= ((uint64_t)tail[ 3]) << 24;
  case  3: k1 ^= ((uint64_t)tail[ 2]) << 16;
  case  2: k1 ^= ((uint64_t)tail[ 1]) << 8;
  case  1: k1 ^= ((uint64_t)tail[ 0]) << 0;
           k1 *= c1; k1  = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
  };

  //----------
  // finalization

  h1 ^= len; h2 ^= len;

  h1 += h2;
  h2 += h1;

  h1 = fmix64(h1);
  h2 = fmix64(h2);

  h1 += h2;
  h2 += h1;

  ((uint64_t*)out)[0] = h1;
  ((uint64_t*)out)[1] = h2;
}

//-----------------------------------------------------------------------------

官方测试用例和个人理解

Murmur3 可用性测试验证示例

template < typename hashtype >
void test ( hashfunc<hashtype> hash, HashInfo * info )
{
  const int hashbits = sizeof(hashtype) * 8;

  printf("-------------------------------------------------------------------------------\n");
  printf("--- Testing %s (%s)\n\n",info->name,info->desc);

  //-----------------------------------------------------------------------------
  // Sanity tests 可用性测试

  if(g_testSanity || g_testAll)
  {
    printf("[[[ Sanity Tests ]]]\n\n");
    
    VerificationTest(hash,hashbits,info->verification,true);
    SanityTest(hash,hashbits);
    AppendedZeroesTest(hash,hashbits);
    printf("\n");
  }
验证测试代码:

对于数组作为键值的用法来说,影响hash值的因素可以通过VerificationTest函数窥探出:

1、数组的大小(如{1,2}和{1,2,3})
2、数组的内容填充(如{1,2}和{2,3})
3、数组的排列组合顺序(如{2,1}和{1,2})

实现逻辑:

如数组{0,1,2,...,n}
先对{0}取murmur3取hashes[0*4],
再对{0,1}取murmur3取hashes[1*4],
再对{0,1,2}取murmur3取hashes[2*4],
...
再对{0,1,2,...,n-1}取murmur3取hashes[(n-1)*4],

最后以hashes数组为key值进行取hash.

//-----------------------------------------------------------------------------
// This should hopefully be a thorough and uambiguous test of whether a hash
// is correctly implemented on a given platform
//hash是否在给定平台上正确实现,对其进行彻底且明确的测试。
bool VerificationTest ( pfHash hash, const int hashbits, uint32_t expected, bool verbose )
{
  const int hashbytes = hashbits / 8;

  uint8_t * key    = new uint8_t[256];
  uint8_t * hashes = new uint8_t[hashbytes * 256];
  uint8_t * final  = new uint8_t[hashbytes];

  memset(key,0,256);
  memset(hashes,0,hashbytes*256);
  memset(final,0,hashbytes);

  // Hash keys of the form {0}, {0,1}, {0,1,2}... up to N=255,using 256-N as the seed

  for(int i = 0; i < 256; i++)
  {
    key[i] = (uint8_t)i;
    //{0}, {0,1}, {0,1,2}...{0,1,...,255}
    // 0  , 1   ,  2     ...255
    //256 , 255 , 254    ...1
    //0  , 4*1  , 4*2    ...4*255
    hash(key,i,256-i,&hashes[i*hashbytes]);
  }

  // Then hash the result array

  hash(hashes,hashbytes*256,0,final);

  // The first four bytes of that hash, interpreted as a little-endian integer, is our
  // verification value

  uint32_t verification = (final[0] << 0) | (final[1] << 8) | (final[2] << 16) | (final[3] << 24);

  delete [] key;
  delete [] hashes;
  delete [] final;

  //----------

  if(expected != verification)
  {
    if(verbose) printf("Verification value 0x%08X : Failed! (Expected 0x%08x)\n",verification,expected);
    return false;
  }
  else
  {
    if(verbose) printf("Verification value 0x%08X : Passed!\n",verification);
    return true;
  }
}
指定Murmur3的hash算法调用

HashInfo * g_hashUnderTest = NULL;

void VerifyHash ( const void * key, int len, uint32_t seed, void * out )
{
  
  //g_inputVCode = MurmurOAAT(key,len,g_inputVCode);
  //printf("hash key g_inputVCode: %u ...\n",g_inputVCode);
  
  //g_inputVCode = MurmurOAAT(&seed,sizeof(uint32_t *),g_inputVCode);
  //printf("hash seed g_inputVCode: %u ...\n",g_inputVCode);
  
  g_hashUnderTest->hash(key,len,seed,out);
  printf("hash key hash out: %u ...\n",(uint32_t *)out);
  
  //g_outputVCode = MurmurOAAT(out,g_hashUnderTest->hashbits/8,g_outputVCode);
  //printf("hash out g_outputVCode: %u ...\n",g_outputVCode);
}
目录
相关文章
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
65 3
|
1月前
|
算法 安全
散列值使用相同的哈希算法
当使用相同的哈希算法对相同的数据进行散列时,所产生的散列值(也称为哈希值或摘要)总是相同的。这是因为哈希算法是一种确定性的函数,它对于给定的输入将始终产生相同的输出。 例如,如果你用SHA-256算法对字符串"hello world"进行哈希处理,无论何时何地,只要输入是完全一样的字符串,你都会得到相同的160位(40个十六进制字符)的SHA-256散列值。 但是,需要注意的是,即使是输入数据的微小变化也会导致产生的散列值完全不同。此外,不同的哈希算法(如MD5、SHA-1、SHA-256等)会对相同的数据产生不同的散列值。 哈希算法的一个关键特性是它们的“雪崩效应”,即输入中的一点小小
36 4
|
3月前
|
存储 算法 C#
C#哈希查找算法
C#哈希查找算法
|
3月前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
56 0
|
3月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
|
5月前
|
算法 安全 JavaScript
安全哈希算法:SHA算法
安全哈希算法:SHA算法
115 1
安全哈希算法:SHA算法
|
5月前
|
JavaScript 算法 前端开发
国标哈希算法基础:SHA1、SHA256、SHA512、MD5 和 HMAC,Python和JS实现、加盐、算法魔改
国标哈希算法基础:SHA1、SHA256、SHA512、MD5 和 HMAC,Python和JS实现、加盐、算法魔改
699 1
|
6月前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。
107 2
|
7月前
|
存储 算法 安全
深入理解SHA系列哈希算法:安全性的保障与演进
深入理解SHA系列哈希算法:安全性的保障与演进
|
7月前
|
存储 算法 Java
Java查找算法概览:二分查找适用于有序数组,通过比较中间元素缩小搜索范围;哈希查找利用哈希函数快速定位,示例中使用HashMap存储键值对,支持多值关联。
【6月更文挑战第21天】Java查找算法概览:二分查找适用于有序数组,通过比较中间元素缩小搜索范围;哈希查找利用哈希函数快速定位,示例中使用HashMap存储键值对,支持多值关联。简单哈希表实现未涵盖冲突解决和删除操作。
72 1

热门文章

最新文章