使用Filebeat收集Kubernetes的应用日志

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 前言 在进行日志收集的过程中,我们首先想到的是使用Logstash,因为它是ELK stack中的重要成员,但是在测试过程中发现,Logstash是基于JDK的,在没有产生日志的情况单纯启动Logstash就大概要消耗500M内存,在每个Pod中都启动一个日志收集组件的情况下,使用logstash有点浪费系统资源,经人推荐我们选择使用Filebeat替代,经测试单独启动Filebeat容器大约会消耗12M内存,比起logstash相当轻量级。

前言

在进行日志收集的过程中,我们首先想到的是使用Logstash,因为它是ELK stack中的重要成员,但是在测试过程中发现,Logstash是基于JDK的,在没有产生日志的情况单纯启动Logstash就大概要消耗500M内存,在每个Pod中都启 动一个日志收集组件的情况下,使用logstash有点浪费系统资源,经人推荐我们选择使用Filebeat替代,经测试单独启动Filebeat容器大约会消耗12M内存,比起logstash相当轻量级。

方案选择

Kubernetes官方提供了EFK的日志收集解决方案,但是这种方案并不适合所有的业务场景,它本身就有一些局限性,例如:

  • 所有日志都必须是out前台输出,真实业务场景中无法保证所有日志都在前台输出
  • 只能有一个日志输出文件,而真实业务场景中往往有多个日志输出文件
  • Fluentd并不是常用的日志收集工具,我们更习惯用logstash,现使用filebeat替代
  • 我们已经有自己的ELK集群且有专人维护,没有必要再在kubernetes上做一个日志收集服务

基于以上几个原因,我们决定使用自己的ELK集群。

Kubernetes集群中的日志收集解决方案

编号 方案 优点 缺点
1 每个app的镜像中都集成日志收集组件 部署方便,kubernetes的yaml文件无须特别配置,可以为每个app自定义日志收集配置 强耦合,不方便应用和日志收集组件升级和维护且会导致镜像过大
2 单独创建一个日志收集组件跟app的容器一起运行在同一个pod中 低耦合,扩展性强,方便维护和升级 需要对kubernetes的yaml文件进行单独配置,略显繁琐
3 将所有的Pod的日志都挂载到宿主机上,每台主机上单独起一个日志收集Pod 完全解耦,性能最高,管理起来最方便 需要统一日志收集规则,目录和输出方式

综合以上优缺点,我们选择使用方案二。

该方案在扩展性、个性化、部署和后期维护方面都能做到均衡,因此选择该方案。

20170518093251

我们创建了自己的logstash镜像。创建过程和使用方式见https://github.com/rootsongjc/docker-images

镜像地址:index.tenxcloud.com/jimmy/filebeat:5.4.0

测试

我们部署一个应用filebeat来收集日志的功能测试。

创建应用yaml文件filebeat-test.yaml

apiVersion: extensions/v1beta1 kind: Deployment metadata: name: filebeat-test namespace: default spec: replicas: 3 template: metadata: labels: k8s-app: filebeat-test spec: containers: - image: sz-pg-oam-docker-hub-001.tendcloud.com/library/filebeat:5.4.0 name: filebeat volumeMounts: - name: app-logs mountPath: /log
 - name: filebeat-config mountPath: /etc/filebeat/ - image: sz-pg-oam-docker-hub-001.tendcloud.com/library/analytics-docker-test:Build_8 name : app ports: - containerPort: 80 volumeMounts: - name: app-logs mountPath: /usr/local/TalkingData/logs volumes: - name: app-logs emptyDir: {} - name: filebeat-config configMap: name: filebeat-config --- apiVersion: v1 kind: Service metadata: name: filebeat-test labels: app: filebeat-test spec: ports: - port: 80 protocol: TCP name: http selector: run: filebeat-test --- apiVersion: v1 kind: ConfigMap metadata: name: filebeat-config data: filebeat.yml: | filebeat.prospectors: - input_type: log paths: - "/log/*" - "/log/usermange/common/*" output.elasticsearch: hosts: ["172.23.5.255:9200"] username: "elastic" password: "changeme" index: "filebeat-test"

说明

该文件中包含了配置文件filebeat的配置文件的ConfigMap,因此不需要再定义环境变量。

当然你也可以不同ConfigMap,通过传统的传递环境变量的方式来配置filebeat。

例如对filebeat的容器进行如下配置:

 containers: - image: sz-pg-oam-docker-hub-001.tendcloud.com/library/filebeat:5.4.0
 name: filebeat
 volumeMounts: - name: app-logs
 mountPath: /log
 env: 
 - name: PATHS
 value: "/log/*"
 - name: ES_SERVER
 value: 172.23.5.255:9200
 - name: INDEX
 value: logstash-docker
 - name: INPUT_TYPE
 value: log

目前使用这种方式会有个问题,及时PATHS只能传递单个目录,如果想传递多个目录需要修改filebeat镜像的docker-entrypoint.sh脚本,对该环境变量进行解析增加filebeat.yml文件中的PATHS列表。

推荐使用ConfigMap,这样filebeat的配置就能够更灵活。

注意事项

  • 将app的/usr/local/TalkingData/logs目录挂载到filebeat的/log目录下。
  • 该文件可以在manifests/test/filebeat-test.yaml找到。
  • 我使用了自己的私有镜像仓库,测试时请换成自己的应用镜像。
  • Filebeat的环境变量的值配置请参考https://github.com/rootsongjc/docker-images

创建应用

部署Deployment

kubectl create -f filebeat-test.yaml

查看http://172.23.5.255:9200/_cat/indices将可以看到列表有这样的indices:

green open filebeat-2017.05.17 1qatsSajSYqAV42_XYwLsQ 5 1 1189 0 1mb 588kb

访问Kibana的web页面,查看filebeat-2017.05.17的索引,可以看到logstash收集到了app日志。

20170518093302

问题记录

我们配置的index: "filebeat-test"没有生效,需要参考filebeat的配置文档,对filebeat的配置进一步优化。

本文转自中文社区-使用Filebeat收集Kubernetes的应用日志

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
11天前
|
缓存 Kubernetes Docker
GitLab Runner 全面解析:Kubernetes 环境下的应用
GitLab Runner 是 GitLab CI/CD 的核心组件,负责执行由 `.gitlab-ci.yml` 定义的任务。它支持多种执行方式(如 Shell、Docker、Kubernetes),可在不同环境中运行作业。本文详细介绍了 GitLab Runner 的基本概念、功能特点及使用方法,重点探讨了流水线缓存(以 Python 项目为例)和构建镜像的应用,特别是在 Kubernetes 环境中的配置与优化。通过合理配置缓存和镜像构建,能够显著提升 CI/CD 流水线的效率和可靠性,助力开发团队实现持续集成与交付的目标。
|
16天前
|
存储 人工智能 JSON
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
RAG Logger 是一款专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、检索结果记录、LLM 交互记录和性能监控等功能。
46 7
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
|
4天前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
1月前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
70 13
|
1月前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
1月前
|
运维 监控 Cloud Native
一行代码都不改,Golang 应用链路指标日志全知道
本文将通过阿里云开源的 Golang Agent,帮助用户实现“一行代码都不改”就能获取到应用产生的各种观测数据,同时提升运维团队和研发团队的幸福感。
166 10
|
1月前
|
存储 Prometheus 监控
Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行
本文深入探讨了在Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行。
63 5
|
12天前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
22天前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
90 12
|
25天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。

热门文章

最新文章