迁移传统应用到Kubernetes步骤详解 – 以Hadoop YARN为例

简介: 前言 本文已归档到 kubernetes-handbook 【第三章用户指南】的【在Kubernetes中开发部署应用】小节中,一切更新以 GitHub 为准。 本文档不是说明如何在 kubernetes 中开发和部署应用程序,如果您想要直接开发应用程序在 kubernetes 中运行可以参考 适用于kubernetes的应用开发部署流程。

前言


本文已归档到 kubernetes-handbook 【第三章用户指南】的【在Kubernetes中开发部署应用】小节中,一切更新以 GitHub 为准。

本文档不是说明如何在 kubernetes 中开发和部署应用程序,如果您想要直接开发应用程序在 kubernetes 中运行可以参考 适用于kubernetes的应用开发部署流程

本文旨在说明如何将已有的应用程序尤其是传统的分布式应用程序迁移到 kubernetes 中。如果该类应用程序符合云原生应用规范(如12因素法则)的话,那么迁移会比较顺利,否则会遇到一些麻烦甚至是阻碍。具体请参考 迁移至云原生应用架构

接下来我们将以 Spark on YARN with kubernetes 为例来说明,该例子足够复杂也很有典型性,了解了这个例子可以帮助大家将自己的应用迁移到 kubernetes 集群上去,代码和配置文件可以在 这里 找到(本文中加入 Spark 的配置,代码中并没有包含,读者可以自己配置)。

下图为整个架构的示意图,代码和详细配置文件请参考 kube-yarn(不包含 ingress、spark 配置),所有的进程管理和容器扩容直接使用 Makefile,如何使用请参考该项目文档。

注意: 该例子仅用来说明具体的步骤划分和复杂性,在生产环境应用还有待验证,请谨慎使用。

术语

对于为曾接触过 kubernetes 或对云平台的技术细节不太了解的人来说,如何将应用迁移到 kubernetes 中可能是个头疼的问题,在行动之前有必要先了解整个过程中需要用到哪些概念和术语,有助于大家在行动中达成共识。

过程中可能用到的概念和术语初步整理如下:

为了讲解整改过程和具体细节,我们所有操作都是通过命令手动完成,不使用自动化工具。当您充分了解到其中的细节后可以通过自动化工具来优化该过程,以使其更加自动和高效,同时减少因为人为操作失误导致的迁移失败。

步骤详解

整个迁移过程分为如下几个步骤:

1. 将原有应用拆解为服务

我们不是一上来就开始做镜像,写配置,而是应该先梳理下要迁移的应用中有哪些可以作为服务运行,哪些是变的,哪些是不变的部分。

服务划分的原则是最小可变原则,这个同样适用于镜像制作,将服务中不变的部分编译到同一个镜像中。

对于像 Spark on YARN 这样复杂的应用,可以将其划分为三大类服务:

  • ResourceManager
  • NodeManager
  • Spark client

2. 制作镜像

根据拆解出来的服务,我们需要制作两个镜像:

  • Hadoop
  • Spark (From hadoop docker image)

因为我们运行的是 Spark on YARN,因此 Spark 依赖与 Hadoop 镜像,我们在 Spark 的基础上包装了一个 web service 作为服务启动。

镜像制作过程中不需要在 Dockerfile 中指定 Entrypoint 和 CMD,这些都是在 kubernetes 的 YAML 文件中指定的。

Hadoop YARN 的 Dockerfile 参考如下配置。

FROM my-docker-repo/jdk:7u80 # Add native libs
ARG HADOOP_VERSION=2.6.0-cdh5.5.2 ## Prefer to download from server not use local storage
ADD hadoop-${HADOOP_VERSION}.tar.gz /usr/local
ADD ./lib/* /usr/local/hadoop-${HADOOP_VERSION}/lib/native/
ADD ./jars/* /usr/local/hadoop-${HADOOP_VERSION}/share/hadoop/yarn/
ENV HADOOP_PREFIX=/usr/local/hadoop \
 HADOOP_COMMON_HOME=/usr/local/hadoop \
 HADOOP_HDFS_HOME=/usr/local/hadoop \
 HADOOP_MAPRED_HOME=/usr/local/hadoop \
 HADOOP_YARN_HOME=/usr/local/hadoop \
 HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop \
 YARN_CONF_DIR=/usr/local/hadoop/etc/hadoop \
 PATH=${PATH}:/usr/local/hadoop/bin

RUN \
 cd /usr/local && ln -s ./hadoop-${HADOOP_VERSION} hadoop && \
 rm -f ${HADOOP_PREFIX}/logs/*

WORKDIR $HADOOP_PREFIX

# Hdfs ports
EXPOSE 50010 50020 50070 50075 50090 8020 9000
# Mapred ports
EXPOSE 19888
#Yarn ports
EXPOSE 8030 8031 8032 8033 8040 8042 8088
#Other ports
EXPOSE 49707 2122

3. 准备应用的配置文件

因为我们只制作了一个 Hadoop 的镜像,而需要启动两个服务,这就要求在服务启动的时候必须加载不同的配置文件,现在我们只需要准备两个服务中需要同时用的的配置的部分。

YARN 依赖的配置在 artifacts 目录下,包含以下文件:

bootstrap.sh
capacity-scheduler.xml
container-executor.cfg
core-site.xml
hadoop-env.sh
hdfs-site.xml
log4j.properties
mapred-site.xml
nodemanager_exclude.txt
slaves
start-yarn-nm.sh
start-yarn-rm.sh
yarn-env.sh
yarn-site.xml

其中作为 bootstrap 启动脚本的 bootstrap.sh 也包含在该目录下,该脚本如何编写请见下文。

4. Kubernetes YAML 文件

根据业务的特性选择最适合的 kubernetes 的资源对象来运行,因为在 YARN 中 NodeManager 需要使用主机名向 ResourceManger 注册,因此需要沿用 YARN 原有的服务发现方式,使用 headless service 和 StatefulSet 资源。更多资料请参考 StatefulSet

所有的 Kubernetes YAML 配置文件存储在 manifest 目录下,包括如下配置:

  • yarn-cluster 的 namespace 配置
  • Spark、ResourceManager、NodeManager 的 headless service 和 StatefulSet 配置
  • 需要暴露到 kubernetes 集群外部的 ingress 配置(ResourceManager 的 Web)
kube-yarn-ingress.yaml
spark-statefulset.yaml
yarn-cluster-namespace.yaml
yarn-nm-statefulset.yaml
yarn-rm-statefulset.yaml

5. Bootstrap 脚本

Bootstrap 脚本的作用是在启动时根据 Pod 的环境变量、主机名或其他可以区分不同 Pod 和将启动角色的变量来修改配置文件和启动服务应用。

该脚本同时将原来 YARN 的日志使用 stdout 输出,便于使用 kubectl logs 查看日志或其他日志收集工具进行日志收集。

启动脚本 bootstrap.sh 跟 Hadoop 的配置文件同时保存在 artifacts 目录下。

该脚本根据 Pod 的主机名,决定如何修改 Hadoop 的配置文件和启动何种服务。bootstrap.sh 文件的部分代码如下:

if [[ "${HOSTNAME}" =~ "yarn-nm" ]]; then
 sed -i '/<\/configuration>/d' $HADOOP_PREFIX/etc/hadoop/yarn-site.xml
 cat >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml <<- EOM
 <property> <name>yarn.nodemanager.resource.memory-mb</name>
 <value>${MY_MEM_LIMIT:-2048}</value> </property>

 <property>
 <name>yarn.nodemanager.resource.cpu-vcores</name> <value>${MY_CPU_LIMIT:-2}</value> </property>
EOM
 echo '</configuration>' >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml
 cp ${CONFIG_DIR}/start-yarn-nm.sh $HADOOP_PREFIX/sbin/
 cd $HADOOP_PREFIX/sbin
 chmod +x start-yarn-nm.sh
 ./start-yarn-nm.sh
fi

if [[ $1 == "-d" ]]; then
 until find ${HADOOP_PREFIX}/logs -mmin -1 | egrep -q '.*'; echo "`date`: Waiting for logs..." ; do sleep 2 ; done
 tail -F ${HADOOP_PREFIX}/logs/* &
 while true; do sleep 1000; done
fi

从这部分中代码中可以看到,如果 Pod 的主机名中包含 yarn-nm 字段则向 yarn-site.xml配置文件中增加如下内容:

 <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>${MY_MEM_LIMIT:-2048}</value> </property> <property> <name>yarn.nodemanager.resource.cpu-vcores</name> <value>${MY_CPU_LIMIT:-2}</value> </property>

其中 MY_MEM_LIMIT 和 MY_CPU_LIMIT 是 kubernetes YAML 中定义的环境变量,该环境变量又是引用的 Resource limit。

所有的配置准备完成后,执行 start-yarn-nm.sh 脚本启动 NodeManager。

如果 kubernetes YAML 中的 container CMD args 中包含 -d 则在后台运行 NodeManger 并 tail 输出 NodeManager 的日志到标准输出。

6. ConfigMaps

将 Hadoop 的配置文件和 bootstrap 脚本作为 ConfigMap 资源保存,用作 Pod 启动时挂载的 volume。

kubectl create configmap hadoop-config \
	 --from-file=artifacts/hadoop/bootstrap.sh \
	 --from-file=artifacts/hadoop/start-yarn-rm.sh \
	 --from-file=artifacts/hadoop/start-yarn-nm.sh \
	 --from-file=artifacts/hadoop/slaves \
	 --from-file=artifacts/hadoop/core-site.xml \
	 --from-file=artifacts/hadoop/hdfs-site.xml \
	 --from-file=artifacts/hadoop/mapred-site.xml \
	 --from-file=artifacts/hadoop/yarn-site.xml \
	 --from-file=artifacts/hadoop/capacity-scheduler.xml \
	 --from-file=artifacts/hadoop/container-executor.cfg \
	 --from-file=artifacts/hadoop/hadoop-env.sh \
	 --from-file=artifacts/hadoop/log4j.properties \
	 --from-file=artifacts/hadoop/nodemanager_exclude.txt \
	 --from-file=artifacts/hadoop/yarn-env.sh
kubectl create configmap spark-config \
	 --from-file=artifacts/spark/spark-bootstrap.sh \
	 --from-file=artifacts/spark/spark-env.sh \
	 --from-file=artifacts/spark/spark-defaults.conf

所有的配置完成后,可以可以使用 kubectl 命令来启动和管理集群了,我们编写了 Makefile,您可以直接使用该 Makefile 封装的命令实现部分的自动化。

本文转自中文社区-迁移传统应用到Kubernetes步骤详解 – 以Hadoop YARN为例

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
10月前
|
运维 分布式计算 Kubernetes
ACK One多集群Service帮助大批量应用跨集群无缝迁移
ACK One多集群Service可以帮助您,在无需关注服务间的依赖,和最小化迁移风险的前提下,完成跨集群无缝迁移大批量应用。
|
存储 运维 Kubernetes
K8s业务迁移最佳实践: 灵活管理资源备份与调整策略,实现高效简便的应用恢复
在当今快速变化的云原生领域,Kubernetes(K8s)集群的运维面临着诸多挑战,其中灾备与业务迁移尤为关键。ACK备份中心支持丰富的资源调整策略,在数据恢复阶段即可自动适配目标集群环境,确保业务无缝重启。
|
存储 运维 Kubernetes
云端迁移:备份中心助力企业跨云迁移K8s容器服务平台
本文将简要介绍阿里云容器服务ACK的备份中心,并以某科技公司在其实际的迁移过程中遇到具体挑战为例,阐述如何有效地利用备份中心来助力企业的容器服务平台迁移项目。
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
718 3
YARN(Hadoop操作系统)的架构
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
473 1
使用YARN命令管理Hadoop作业
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
280 5
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
170 4
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
481 5
|
XML 资源调度 网络协议
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
573 4
|
分布式计算 资源调度 Hadoop
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
357 4