阿里深度学习框架开源了!无缝对接TensorFlow、PyTorch

简介: 阿里巴巴将于12月开源其内部深度学习框架 X-DeepLearning,面向广告、推荐、搜索等高维稀疏数据场景,以填补TensorFlow、PyTorch等现有开源深度学习框架主要面向图像、语音等低维稠密数据的不足。

阿里巴巴内部透露将开源内部深度学习框架 X-DeepLearning的计划,这是业界首个面向广告、推荐、搜索等高维稀疏数据场景的深度学习开源框架,可以与TensorFlow、PyTorch 和 MXNet 等现有框架形成互补。

X-Deep Learning(下文简称XDL)由阿里巴巴旗下大数据营销平台阿里妈妈基于自身广告业务自主研发,已经大规模部署应用在核心生产场景,在这次的“双11”中也发挥了重要作用。

阿里妈妈研究人员介绍,XDL整体上跟TensorFlow和PyTorch是同级的,它们很好地解决了目前已有开源深度学习框架分布式运行能力不足,以及大规模稀疏特征表征学习能力不足的问题。

XDL 采用了“桥接”的架构设计理念。这种架构使得 XDL 跟业界的开源社区无缝对接。例如,用户可以非常方便地在XDL框架上应用基于TensorFlow或者PyTorch编写的最先进开源深度学习算法。此外,对于已经在使用其他开源框架的企业或者个人用户,也可以在原有系统基础上轻松进行扩展,享受XDL带来的高维稀疏数据场景下极致的分布式能力。

数据的高维稀疏性是广告、推荐、搜索等互联网众多核心应用场景的特征,覆盖了大多数互联网企业的数据应用模式。

对于难以与BAT研发能力比肩的众多互联网公司而言,工业级深度学习框架XDL及内置算法方案的开源,将助力各大公司的技术升级,大大提升广告/推荐/搜索场景的精准性,缩短技术迭代周期。

面向广告、推荐、搜索场景的工业级分布式开源DL框架

2016年左右,阿里妈妈团队在研发基于深度学习的广告点击率预估算法时发现,当时已有的TensorFlow、MXNet等开源框架,用来实验算法原型可以,但真正面临互联网尺度的规模化数据时,运行效率面临巨大的挑战。

“我们第一次基于TensorFlow训练我们实际生产系统的深度点击率预估模型时,一天的数据量需要运行超过3天的时间模型才能收敛,”阿里妈妈研发人员告诉新智元:“典型的生产模型需要用到的训练样本往往都是历史几个月的数据,显然直接使用TensorFlow是不现实的。”

随后,阿里妈妈团队也试图对TensorFlow做一些简单优化,但发现改动成本巨大。进一步剖析框架后,他们发现本质的原因是TensorFlow、MXNet、PyTorch等框架大都是面向图像、语音等领域的稠密数据设计,对广告、推荐等场景的高维稀疏数据上的深度学习计算考虑不足

为此,阿里妈妈启动了XDL框架的研发,希望能够在复用已有开源框架对稠密数据的计算能力基础上,重点打造面向工业级应用的分布式规模能力,单机能够处理的计算则引用现有开源框架。

经过2年的研发与打磨,XDL目前已经在阿里妈妈成功部署到内部的生产系统。以阿里妈妈定向广告为例,2017年,以 XDL 为基础的深度学习算法升级带来的广告收入提升超过百亿。

“我们注意到今天业界的很多团队还在类似的重复性工作。开源XDL,是希望把阿里巴巴的能力赋能给大家,推高全行业的整体技术水位,同时也希望能够吸引业界的伙伴们一起来建设高维稀疏数据场景上的深度学习技术,一起成长与获益。 ”

“在现有的版本中,我们在单节点稠密深度网络计算上采用桥接技术,复用了 TensorFlow、MxNet 的能力,也是最大程度上复用了已有开源深度学习框架的能力。”

研究人员表示,后续 XDL 也会考虑加入ONNX。“ONNX针对稀疏计算的表征能力目前是不完善的,我们也在考虑对ONNX的协议标准进行扩充。”

研究人员表示,他们预计12月在Github公开 XDL的源代码和使用文档。除了核心的 X-DeepLearning 训练框架,阿里还将开源面向高维稀疏数据场景的系统化解决方案,计划分批次对外发布,包括面向在线实时服务的高性能深度学习预估引擎、面向全库实时检索的全新深度学习匹配引擎;同时还内置阿里妈妈自主研发的一系列创新算法,涉及CTR预估模型、CVR预估模型、匹配召回模型、模型压缩训练算法等等。

不管是以广告、推荐、搜索为代表业务的企业级用户,还是对此感兴趣的个人用户,都可以加入到开源计划当中。

一图看懂阿里巴巴首次公开深度学习框架
8861a0121afc36a2d6ab83082f4033aa496c2a9b
原文发布时间为:2018-11-29
本文作者:新智元
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。
原文链接:阿里深度学习框架开源了!无缝对接TensorFlow、PyTorch
相关文章
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
5月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
422 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
1188 55
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
362 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
617 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
3094 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
701 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
机器学习/深度学习 算法 计算机视觉
《深度学习案例实战》新书出版——基于阿里魔搭平台
《深度学习案例实战》是一本实用的指南,涵盖多个领域的深度学习应用案例。本书旨在通过具体的案例讲解,阐述典型深度学习算法在图像分类、声音识别、语义分割、目标检测等各个领域的广泛应用。本书所涵盖的典型案例包括太阳黑子分类、气象预测、食物声音分类、智能厨房、智能冰箱食材检测、集体照人脸识别、遛狗绳识别、智能售药机药品检测、道路裂纹检测、学生教室行为检测等。这些案例旨在通过实际问题的解决,使读者能够深入理解深度学习算法的应用和实践。 本书特别关注两个关键技术:低代码开发平台摩搭ModelScope和深度学习加速器OpenVINO。摩搭平台为读者提供了一个便捷的开发环境,借助其丰富的预训练模型库和开发平
514 2
《深度学习案例实战》新书出版——基于阿里魔搭平台
|
12月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
1087 0

推荐镜像

更多