连续向量最大和(一维模式识别)算法的分析与优化

简介: 输入:n个互相没有关联的数字(正负随机) 输出:该数组中连续数字的最大和     如在数组3 -4 5 2 -5 5 9 -9 -2 8中,连续数字最大和为5 2 -5 5 9这个数字序列的和,最大和为16 一、简单迭代算法    遇到这种问题,头脑中冒出的最直接最简单的就是这种算法。

输入:n个互相没有关联的数字(正负随机)

输出:该数组中连续数字的最大和

    如在数组3 -4 5 2 -5 5 9 -9 -2 8中,连续数字最大和为5 2 -5 5 9这个数字序列的和,最大和为16

一、简单迭代算法

    遇到这种问题,头脑中冒出的最直接最简单的就是这种算法。用一个双重循环,一个代表起始位置,一个标注末尾,计算其中元素的和,在与最大值比较,得出新的最大值。

  1. for(int i = 0;i<N;i++)  
  2.     {  
  3.         int sum = 0;  
  4.         for(int j = i;j<N;j++)  
  5.         {  
  6.             sum += arr[j];  
  7.             max = MAX(sum,max);  
  8.         }  
  9.     }

    对于输入规模n来说,该解法会执行n^2步,所以该算法为平方时间。

二、动态规划的迭代算法

    我们可以用一个数组sum[i],代表前i个整数和这样一种状态。所以后一个状态就由前一个状态加arr[i]得到,而两个状态相减则得到了两个整数中间数的和。

  1. for(int i = 1;i<N;i++)  
  2.     sum[i] = sum[i-1]+arr[i];  
  3.     
  4. for(int i = N-1;i>=0;i--)  
  5.     for(int j = i;j>=0;j--)  
  6.     {  
  7.         int sum1 = sum[i] - sum[j];  
  8.         max = MAX(max,sum1);  
  9.     }  

    对于输入规模n来说,该解法会执行n^2步,所以该算法仍然为平方时间。

三、分治算法

    将一个数组的最大和问题转换为两个数组的最大和问题,然后递归的找出两个向量的最大和。不过要考虑一种情况就是和最大的那一组数组可能跨越两个子数组的边界,所以需要对边界的数组进行处理。对于跨越边界的问题,分别在两个数组中从边界开始,计算边界的最大和,再将两个边界最大和相加,与子数组的最大和比较。

  1. float maxsum3(int l,int u)  
  2. {  
  3.     if(l>u)  
  4.         return 0;  
  5.     if(l == u)  
  6.         return MAX(0,arr[l]);  
  7.     int m = (l+u)/2;  
  8.         
  9.     int lmax = 0,sum = 0;  
  10.     for(int i = m;i>=l;i--)  
  11.     {  
  12.         sum += arr[i];  
  13.         lmax = MAX(lmax,sum);  
  14.     }  
  15.         
  16.     int rmax = 0;  
  17.     sum = 0;  
  18.     for(int i = m+1;i<=u;i++)  
  19.     {  
  20.         sum += arr[i];  
  21.         rmax = MAX(rmax,sum);  
  22.     }  
  23.         
  24.     return max((float)lmax+rmax,maxsum3(l,m),maxsum3(m+1,u));  
  25. }  

    可以看到子数组求值的方向都是从边界(中间)向两边展开的。

    该算法每次执行n次操作,递归总共有log n次,所以时间复杂度为O(n lon n)。

四、扫描算法

    在这个问题中,正负数随机出现,所以我们默认在一个较长的数组里,最大和是大于零的。对一个元素不多的数组进行直觉运算时,我们总是习惯于从左往右开始扫描数字,当发现几个数字的和小于0时就直接略过前面的数字,从新位置开始扫描,并记录下出现过的最大值,直到扫描完整个数组。1977年,当这个问题(模式匹配)被布朗大学的Grenander提出时,他独立设计出了两个平方算法。后来他将问题讲给Michael Shamos听,后者提出了分治算法。那时,他们俩都认为没有更好的算法了,直到后来Michael Shamos在卡耐基——梅隆大学的一次研讨会上提起了这个问题,而参会的一个统计学家Jay Kadane在一分钟内就设计除了线性时间的扫描算法。不过这下,应该不会再有更优的算法了,毕竟任何算法都至少要花费O(n)的时间。

  1. int maxsofar = 0,maxendinghere = 0;  
  2.     
  3. for(int i = 0;i<N;i++)  
  4. {  
  5.     maxendinghere = MAX(maxendinghere+arr[i],0);  
  6. printf("%d %d",i,maxendinghere);   
  7.     maxsofar = MAX(maxsofar,maxendinghere);  
  8. printf(" %d\n",maxsofar);  
  9. }  
  10. printf("%d",maxsofar);  

    对于{3,-4,2,5,-5,5,9,-9,-2,8}这个数组,过程是这样的:

    线性时间的算法,效率嘛,谁用谁知道。

 

注:四个算法的代码在最大和详细代码

目录
相关文章
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
49 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
11天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
5天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
14天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
25 6
|
4天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
4天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。