大型网站限流算法的实现和改造

简介:

最近写了一个限流的插件,所以避免不了的接触到了一些限流算法。本篇文章就来分析一下这几种常见的限流算法

分析之前

  1. 依我个人的理解来说限流的话应该灵活到可以针对每一个接口来做。比如说一个类里面有5个接口,那么我的限流插件就应该能针对每一个接口就行不同的限流方案。所以呢,既然针对的每个接口所以就需要一个可以唯一标示这个接口的key(我取的是类名+方法名+入参)。
  2. 分布式限流强烈推荐使用redis+lua或者nginx+lua来实现。
  3. 这里用2个限流条件来做示例讲一下常见的限流算法:
    1. 接口1它10秒钟最大允许访问100次
    2. 接口2它10秒钟最大允许每个人访问100次。

计数器算法

这个算法可以说是限流算法中最简单的一种算法了。

核心思想

计数器算法的意思呢就是当接口在一个时间单位中被访问时,我就记下来访问次数,直到它访问的次数到达上限。

涉及变量
  1. 接口(key)
  2. 时间单位(expire)
  3. 允许访问多少次(limit)
  4. 访问次数(value)
条件一

当一个请求过来时,我们就会得到这个key。

1
2
3
4
5
6
7
8
9
if(存在key){
value++;
if(value>=limit){
不能访问
}
}else{
添加key,value为1
设置key过期时间为expire
}
条件二

既然条件一已经实现了,那条件二会复杂么 ?

相比于条件一来说就是同一个key对应了多个用户。那么我们只需要把key加上用户的信息就可以了。比如说 key_用户1、key_用户2。

漏桶算法

核心思想

漏桶算法的意思呢就是一个接口在一个时间单位中允许被访问次数是动态变化的(假如一分钟允许访问60次,那么从开始计时时不管有没有被访问第59秒只允许访问59次,30秒只允许30次)。为什么这样呢,因为有另外一个线程在进行递减操作

涉及变量
  1. 接口(key)
  2. 时间单位(expire)
  3. 允许访问多少次(limit)
  4. 递减间隔时间(interval)
  5. 递减步长(step)
  6. 剩余可访问次数(value)
  7. key的访问时间(lastUpdateTime)
  8. 当前时间(nowTime)(注意nowTime的取值应为应用取得的时间而不是redis或者nginx取得的时间)
条件一

线程一:

1
2
3
4
5
6
7
8
if(存在key){
value--;
if(value<=0){
不能访问
}
}else{
添加key,设置value为limit
}

线程二:

1
2
3
while(过去interval时间){
所有key的value-step
}
条件二

参考计数器算法条件二实现。

算法升级

可以看到实现漏桶算法的话需要每隔interval时间都要另外一条线程去遍历所key的value去做递减操作,那么有没有什么办法可以省略这一步呢。答案是肯定有。

1
2
3
4
5
6
7
8
9
10
11
12
13
if(存在key){
value--;
if((nowTime-lastUpdateTime)>interval){
value=value-(nowTime-lastUpdateTime)/interval*step;
lastUpdateTime=nowTime;
}
if(value<=0){
不能访问
}
}else{
添加key,设置value为limit;
lastUpdateTime=nowTime;
}

令牌桶算法

核心思想

令牌桶算法呢,恰恰是和漏桶算法相反的一个算法,不过还是推荐你使用这个。这个算法的原理我不讲,我觉得聪明的你看了伪代码就明白了。

涉及变量
  1. 接口(key)
  2. 时间单位(expire)
  3. 允许访问多少次(limit)
  4. 递增间隔时间(interval)
  5. 递增步长(step)
  6. 当前可访问次数(value)
  7. key的访问时间(lastUpdateTime)
  8. 当前时间(nowTime)(参照漏桶算法需要注意的点)
条件一

线程一:

1
2
3
4
5
6
7
8
if(存在key){
value++;
if(value>=limit){
不能访问
}
}else{
添加key,设置value为limit
}

线程二:

1
2
3
while(过去interval时间){
所有key的value+step
}
条件二

参考计算器算法条件二实现。

算法升级

参考漏桶算法升级实现。

代码

代码实现请参考我的限流框架https://github.com/2388386839/syj-ratelimit

本文出自http://zhixiang.org.cn,转载请保留。

相关文章
|
4月前
|
算法 NoSQL Java
spring cloud的限流算法有哪些?
【8月更文挑战第18天】spring cloud的限流算法有哪些?
91 3
|
5月前
|
存储 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之滑动日志算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之滑动日志算法问题如何解决
|
5月前
|
算法 Java 调度
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用Java代码实现令牌桶算法问题如何解决
|
5月前
|
缓存 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之使用代码实现漏桶算法问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用代码实现漏桶算法问题如何解决
|
5月前
|
算法 UED 缓存
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法适用于哪些场景
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法适用于哪些场景
|
5月前
|
存储 算法 缓存
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么
高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法的原理是什么
|
5月前
|
算法 API 缓存
高并发架构设计三大利器:缓存、限流和降级问题之固定窗口限流算法的原理是什么
高并发架构设计三大利器:缓存、限流和降级问题之固定窗口限流算法的原理是什么
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。