自制操作系统Antz day09——实现内核 (下) 实现图形化界面

简介:   在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,接下来我们要完成界面的图形化,在显示屏中显示鼠标字符桌面,并显示一个终端界面。

  Antz系统更新地址: https://www.cnblogs.com/LexMoon/category/1262287.html

  Linux内核源码分析地址: https://www.cnblogs.com/LexMoon/category/1267413.html

  Github地址:https://github.com/CasterWx 

  在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,接下来我们要完成界面的图形化,在显示屏中显示鼠标字符桌面,并显示一个终端界面。

  效果如下:

  

 

  现在我们已经简单实现了半终端半桌面的显示,虽然说非常Low,但也是Antz的一大步了。


 

1.  封装函数

  在前几天我们已经说明了屏幕显示的原理,也就是在显存固定位置写入数据,这对于显卡来说就是像素点。

  如果屏幕显示原理不清楚的可以参考第三天的:http://www.cnblogs.com/LexMoon/p/antz03.html

  为了方便实现图像化,我将显卡写入的代码使用C语言封装成了函数,颜色定义为数组。

View Code

   这个数组对应了我们要显示的颜色RGB值,将数组下标定义对应的枚举值,可以更加方便使用。

  要在显示器显示字体,可以使用putfont8_asc ()函数,它调用了putfont8()函数:   

View Code

  鼠标指针实现是将其呈图形化的写入,函数init_mouse_cursor8():

View Code

  


 

2 . GDT与lDT

  GDT是在32位时16位寻址模式的改造,在学习汇编时,我们所说的 段:偏移量(段x16+偏移量)寻址方式已经不能使用了,所以厂商们使用了GDT,在不改变段寄存器位数的情况下,完成了32位段寻址,就是利用GDT。

(1)全局描述符表GDT(Global Descriptor Table)

  在整个系统中,全局描述符表GDT只有一张(一个处理器对应一个GDT),GDT可以被放在内存的任何位置,但CPU必须知道GDT的入口,也就是基地址放在哪里,Intel的设计者门提供了一个寄存器GDTR用来存放GDT的入口地址,程序员将GDT设定在内存中某个位置之后,可以通过LGDT指令将GDT的入口地址装入此寄存器,从此以后,CPU就根据此寄存器中的内容作为GDT的入口来访问GDT了。GDTR中存放的是GDT在内存中的基地址和其表长界限。

  基地址指定GDT表中字节0在线性地址空间中的地址,表长度指明GDT表的字节长度值。指令LGDT和SGDT分别用于加载和保存GDTR寄存器的内容。在机器刚加电或处理器复位后,基地址被默认地设置为0,而长度值被设置成0xFFFF。在保护模式初始化过程中必须给GDTR加载一个新值。

(2)段选择子(Selector)

  由GDTR访问全局描述符表是通过“段选择子”(实模式下的段寄存器)来完成的。段选择子是一个16位的寄存器(同实模式下的段寄存器相同)

  段选择子包括三部分:描述符索引(index)、TI、请求特权级(RPL)。他的index(描述符索引)部分表示所需要的段的描述符在描述符表的位置,由这个位置再根据在GDTR中存储的描述符表基址就可以找到相应的描述符。然后用描述符表中的段基址加上逻辑地址(SEL:OFFSET)的OFFSET就可以转换成线性地址,段选择子中的TI值只有一位0或1,0代表选择子是在GDT选择,1代表选择子是在LDT选择。请求特权级(RPL)则代表选择子的特权级,共有4个特权级(0级、1级、2级、3级)。

  关于特权级的说明:任务中的每一个段都有一个特定的级别。每当一个程序试图访问某一个段时,就将该程序所拥有的特权级与要访问的特权级进行比较,以决定能否访问该段。系统约定,CPU只能访问同一特权级或级别较低特权级的段。

  例如给出逻辑地址:21h:12345678h转换为线性地址

  a. 选择子SEL=21h=0000000000100 0 01b 他代表的意思是:选择子的index=4即100b选择GDT中的第4个描述符;TI=0代表选择子是在GDT选择;左后的01b代表特权级RPL=1

  b. OFFSET=12345678h若此时GDT第四个描述符中描述的段基址(Base)为11111111h,则线性地址=11111111h+12345678h=23456789h

(3)局部描述符表LDT(Local Descriptor Table)

  局部描述符表可以有若干张,每个任务可以有一张。我们可以这样理解GDT和LDT:GDT为一级描述符表,LDT为二级描述符表。

    

 

  关于GDT于IDT初始化的代码,它们可以实现鼠标的移动,现在我还没有去写它,此次的任务只是显示。

  最新的Antz系统镜像和代码已经上传到我的github了,这里只列举出剩余的主要代码。

#include <stdio.h>
struct BOOTINFO {
    char cyls, leds, vmode, reserve;
    short scrnx, scrny;
    char *vram;
};

struct SEGMENT_DESCRIPTOR {
    short limit_low, base_low;
    char base_mid, access_right;
    char limit_high, base_high;
};

struct GATE_DESCRIPTOR {
    short offset_low, selector;
    char dw_count, access_right;
    short offset_high;
};

void init_gdtidt(void);
void set_segmdesc(struct SEGMENT_DESCRIPTOR *sd, unsigned int limit, int base, int ar);
void set_gatedesc(struct GATE_DESCRIPTOR *gd, int offset, int selector, int ar);
void load_gdtr(int limit, int addr);
void load_idtr(int limit, int addr);

void HariMain(void)
{
    struct BOOTINFO *binfo = (struct BOOTINFO *) 0x0ff0;
    char s[40], mcursor[256];
    int mx, my;

    init_palette();
    init_screen(binfo->vram, binfo->scrnx, binfo->scrny);


    mx = (binfo->scrnx - 16) / 2; /* 计算画面的中心坐标*/
    my = (binfo->scrny - 28 - 16) / 2;
    init_mouse_cursor8(mcursor, COL8_00FFFF);
    putblock8_8(binfo->vram, binfo->scrnx, 16, 16, mx+20, my, mcursor, 16);
    for (;;) {
        io_hlt();
    }
}

void set_palette(int start, int end, unsigned char *rgb)
{
    int i, eflags;
    eflags = io_load_eflags();    /* 记录中断许可标志的值 */
    io_cli();                     /* 将中断许可标志置为0,禁止中断 */
    io_out8(0x03c8, start);
    for (i = start; i <= end; i++) {
        io_out8(0x03c9, rgb[0] / 4);
        io_out8(0x03c9, rgb[1] / 4);
        io_out8(0x03c9, rgb[2] / 4);
        rgb += 3;
    }
    io_store_eflags(eflags);    /* 复原中断许可标志 */
    return;
}

void boxfill8(unsigned char *vram, int xsize, unsigned char c, int x0, int y0, int x1, int y1)
{
    int x, y;
    for (y = y0; y <= y1; y++) {
        for (x = x0; x <= x1; x++)
            vram[y * xsize + x] = c;
    }
    return;
}

void init_screen(char *vram, int x, int y)
{
    boxfill8(vram, x, COL8_00FFFF,  0,     0,      x,         y);
    boxfill8(vram, x, COL8_C6C6C6,  0,     0,     x/2,   y);
    boxfill8(vram, x, COL8_000000,  3,     15,     x/2-3, y-3);

    boxfill8(vram, x, COL8_008400,  165    ,     30,     215,     40);
    boxfill8(vram, x, COL8_008400,  265    ,     30,     315,     40);

    boxfill8(vram, x, COL8_008400,  190    ,     60,     200,     70);
    boxfill8(vram, x, COL8_008400,  280    ,     60,     290,     70);

    boxfill8(vram, x, COL8_008400,  235    ,     65,     245,     100);

    boxfill8(vram, x, COL8_008400,  235-15    ,     65+40,     245-15,     85+30);
    boxfill8(vram, x, COL8_008400,  235    ,     65+40,     245,     85+30);
    boxfill8(vram, x, COL8_008400,  235+15    ,     65+40,     245+15,     85+30);

    boxfill8(vram, x, COL8_008400,  200    ,     130,     280,     140);
    boxfill8(vram, x, COL8_008400,  200    ,     130,     210,     160);
    boxfill8(vram, x, COL8_008400,  270    ,     130,     280,     160);
    boxfill8(vram, x, COL8_008400,  200    ,     150,     280,     160);

    return;
}

void putfont8(char *vram, int xsize, int x, int y, char c, char *font)
{
    int i;
    char *p, d /* data */;
    for (i = 0; i < 16; i++) {
        p = vram + (y + i) * xsize + x;
        d = font[i];
        if ((d & 0x80) != 0) { p[0] = c; }
        if ((d & 0x40) != 0) { p[1] = c; }
        if ((d & 0x10) != 0) { p[3] = c; }
        if ((d & 0x20) != 0) { p[2] = c; }
        if ((d & 0x08) != 0) { p[4] = c; }
        if ((d & 0x04) != 0) { p[5] = c; }
        if ((d & 0x02) != 0) { p[6] = c; }
        if ((d & 0x01) != 0) { p[7] = c; }
    }
    return;
}

void putfonts8_asc(char *vram, int xsize, int x, int y, char c, unsigned char *s)
{
    extern char hankaku[4096];
    /* C语言中,字符串都是以0x00结尾 */
    for (; *s != 0x00; s++) {
        putfont8(vram, xsize, x, y, c, hankaku + *s * 16);
        x += 8;
    }
    return;
}

void init_mouse_cursor8(char *mouse, char bc)
/* マウスカーソルを準備(16x16) */
{
    static char cursor[16][16] = {
    //鼠标图形
    };
    int x, y;

    for (y = 0; y < 16; y++) {
        for (x = 0; x < 16; x++) {
            if (cursor[y][x] == '*') {
                mouse[y * 16 + x] = COL8_000000;
            }
            if (cursor[y][x] == 'O') {
                mouse[y * 16 + x] = COL8_FFFFFF;
            }
            if (cursor[y][x] == '.') {
                mouse[y * 16 + x] = bc;
            }
        }
    }
    return;
}

void putblock8_8(char *vram, int vxsize, int pxsize,
    int pysize, int px0, int py0, char *buf, int bxsize)
{
    int x, y;
    for (y = 0; y < pysize; y++) {
        for (x = 0; x < pxsize; x++) {
            vram[(py0 + y) * vxsize + (px0 + x)] = buf[y * bxsize + x];
        }
    }
    return;
}

 

目录
相关文章
|
2天前
|
算法 调度 Python
探索操作系统的内核——一个简单的进程调度示例
【9月更文挑战第17天】在这篇文章中,我们将深入探讨操作系统的核心组件之一——进程调度。通过一个简化版的代码示例,我们将了解进程调度的基本概念、目的和实现方式。无论你是初学者还是有一定基础的学习者,这篇文章都将帮助你更好地理解操作系统中进程调度的原理和实践。
|
1天前
|
存储 安全 程序员
探索操作系统的心脏:内核设计与实现
【9月更文挑战第18天】在数字世界的大厦中,操作系统犹如其坚实的基石。本文旨在揭开操作系统核心——内核的神秘面纱,通过浅显易懂的语言和生动的比喻,带领读者一探内核的设计奥秘与实现细节。我们将一同穿梭于进程管理、内存分配、文件系统等关键领域,领略内核如何协调资源、保障安全,并确保系统的高效运行。你将发现,即便是隐藏在幕后的代码,也有着它的节奏与旋律,它们共同奏响了数字世界中最动听的交响曲。
|
1天前
|
安全 API 调度
探索操作系统的心脏:内核与用户空间的交互
【9月更文挑战第18天】在数字世界的海洋中,操作系统扮演着至关重要的角色。它不仅是软件与硬件之间的桥梁,更是维护整个计算生态平衡的守护者。本文将深入探讨操作系统的核心组件——内核,以及它如何与用户空间进行交互,确保系统的稳定运行和资源的合理分配。通过简化的比喻和生动的实例,我们将一探究竟,看看这个不为人知的幕后英雄是如何默默支撑起我们的数字生活的。
|
7天前
|
安全
探索操作系统的心脏:内核与用户模式的交互之旅
【9月更文挑战第12天】在数字世界的海洋中,操作系统扮演着灯塔的角色,指引着每一条数据流的方向。本文将深入探讨操作系统的核心机制——内核与用户模式,揭示它们如何协同工作以保障计算机系统的高效与安全。我们将从基础概念出发,逐步深入到实际代码示例,旨在为读者呈现一幅清晰的操作系统工作原理图景。
|
8天前
|
存储 算法 安全
操作系统的心脏:内核深入解析
本文将带您走进计算机的大脑—操作系统内核,探索它如何管理硬件资源、提供系统服务,并确保多任务高效运行。文章以浅显易懂的语言,逐步揭示内核的神秘面纱,从基础概念到实际应用,让您对操作系统的核心组件有更深的理解。
29 5
|
8天前
|
存储 安全 Linux
探索Linux操作系统的心脏:内核
在这篇文章中,我们将深入探讨Linux操作系统的核心—内核。通过简单易懂的语言和比喻,我们会发现内核是如何像心脏一样为系统提供动力,处理数据,并保持一切顺畅运行。从文件系统的管理到进程调度,再到设备驱动,我们将一探究竟,看看内核是怎样支撑起整个操作系统的大厦。无论你是计算机新手还是资深用户,这篇文章都将带你领略Linux内核的魅力,让你对这台复杂机器的内部运作有一个清晰的认识。
24 3
|
8天前
|
存储 安全 Linux
操作系统的心脏:内核探秘
在数字世界的庞大机器中,操作系统扮演着至关重要的角色,而其核心—内核则如同这台机器的心脏。本文将深入浅出地剖析操作系统内核的设计哲学、功能组成以及它如何管理硬件资源和提供系统服务。我们将一同探索进程调度、内存管理、文件系统等关键组件,并通过实例了解它们是如何协同工作以确保系统的高效与稳定。无论你是技术新手还是资深开发者,这篇文章都将为你打开一扇了解操作系统深邃世界的大门。
18 3
|
3天前
|
存储 安全 算法
探索操作系统的心脏:内核架构与机制的深度剖析
本文旨在深入探讨操作系统的核心——内核,揭示其架构设计与运行机制的内在奥秘。通过对进程管理、内存管理、文件系统、设备控制及网络通信等关键组件的细致分析,展现内核如何高效协调计算机硬件与软件资源,确保系统稳定运行与性能优化。文章融合技术深度与通俗易懂的表述方式,旨在为读者构建一幅清晰、立体的内核运作全景图。
13 0
|
3天前
|
开发者
探索操作系统的心脏:内核设计与实现
【9月更文挑战第16天】在数字世界的海洋中,操作系统犹如一艘航船的心脏,驱动着数据的流动与处理。本文将深入探讨操作系统的核心——内核的设计理念与实现机制,旨在为读者揭开计算机系统运行的神秘面纱。从基础概念到设计原理,再到实际应用,我们将一同穿梭在代码与逻辑之间,体验技术的魅力。
|
6天前
|
存储 安全 算法
探索操作系统的心脏:内核技术与架构
本文深入探讨了现代操作系统中至关重要的部分——内核。通过分析其功能、架构以及在系统性能和稳定性中的作用,揭示了内核技术背后的复杂性及其对操作系统整体表现的影响。我们将从基本概念入手,逐步深入到内核的具体实现细节,旨在为读者提供一个全面而清晰的理解框架。