自制操作系统Antz day09——实现内核 (下) 实现图形化界面

简介:   在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,接下来我们要完成界面的图形化,在显示屏中显示鼠标字符桌面,并显示一个终端界面。

  Antz系统更新地址: https://www.cnblogs.com/LexMoon/category/1262287.html

  Linux内核源码分析地址:https://www.cnblogs.com/LexMoon/category/1267413.html

  Github地址:https://github.com/CasterWx 

  在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,接下来我们要完成界面的图形化,在显示屏中显示鼠标字符桌面,并显示一个终端界面。

  效果如下:

  

 

  现在我们已经简单实现了半终端半桌面的显示,虽然说非常Low,但也是Antz的一大步了。


 

1.  封装函数

  在前几天我们已经说明了屏幕显示的原理,也就是在显存固定位置写入数据,这对于显卡来说就是像素点。

  如果屏幕显示原理不清楚的可以参考第三天的:http://www.cnblogs.com/LexMoon/p/antz03.html

  为了方便实现图像化,我将显卡写入的代码使用C语言封装成了函数,颜色定义为数组。

View Code

   这个数组对应了我们要显示的颜色RGB值,将数组下标定义对应的枚举值,可以更加方便使用。

  要在显示器显示字体,可以使用putfont8_asc ()函数,它调用了putfont8()函数:   

View Code

  鼠标指针实现是将其呈图形化的写入,函数init_mouse_cursor8():

View Code

  


 

2 . GDT与lDT

  GDT是在32位时16位寻址模式的改造,在学习汇编时,我们所说的 段:偏移量(段x16+偏移量)寻址方式已经不能使用了,所以厂商们使用了GDT,在不改变段寄存器位数的情况下,完成了32位段寻址,就是利用GDT。

(1)全局描述符表GDT(Global Descriptor Table)

  在整个系统中,全局描述符表GDT只有一张(一个处理器对应一个GDT),GDT可以被放在内存的任何位置,但CPU必须知道GDT的入口,也就是基地址放在哪里,Intel的设计者门提供了一个寄存器GDTR用来存放GDT的入口地址,程序员将GDT设定在内存中某个位置之后,可以通过LGDT指令将GDT的入口地址装入此寄存器,从此以后,CPU就根据此寄存器中的内容作为GDT的入口来访问GDT了。GDTR中存放的是GDT在内存中的基地址和其表长界限。

  基地址指定GDT表中字节0在线性地址空间中的地址,表长度指明GDT表的字节长度值。指令LGDT和SGDT分别用于加载和保存GDTR寄存器的内容。在机器刚加电或处理器复位后,基地址被默认地设置为0,而长度值被设置成0xFFFF。在保护模式初始化过程中必须给GDTR加载一个新值。

(2)段选择子(Selector)

  由GDTR访问全局描述符表是通过“段选择子”(实模式下的段寄存器)来完成的。段选择子是一个16位的寄存器(同实模式下的段寄存器相同)

  段选择子包括三部分:描述符索引(index)、TI、请求特权级(RPL)。他的index(描述符索引)部分表示所需要的段的描述符在描述符表的位置,由这个位置再根据在GDTR中存储的描述符表基址就可以找到相应的描述符。然后用描述符表中的段基址加上逻辑地址(SEL:OFFSET)的OFFSET就可以转换成线性地址,段选择子中的TI值只有一位0或1,0代表选择子是在GDT选择,1代表选择子是在LDT选择。请求特权级(RPL)则代表选择子的特权级,共有4个特权级(0级、1级、2级、3级)。

  关于特权级的说明:任务中的每一个段都有一个特定的级别。每当一个程序试图访问某一个段时,就将该程序所拥有的特权级与要访问的特权级进行比较,以决定能否访问该段。系统约定,CPU只能访问同一特权级或级别较低特权级的段。

  例如给出逻辑地址:21h:12345678h转换为线性地址

  a. 选择子SEL=21h=0000000000100 0 01b 他代表的意思是:选择子的index=4即100b选择GDT中的第4个描述符;TI=0代表选择子是在GDT选择;左后的01b代表特权级RPL=1

  b. OFFSET=12345678h若此时GDT第四个描述符中描述的段基址(Base)为11111111h,则线性地址=11111111h+12345678h=23456789h

(3)局部描述符表LDT(Local Descriptor Table)

  局部描述符表可以有若干张,每个任务可以有一张。我们可以这样理解GDT和LDT:GDT为一级描述符表,LDT为二级描述符表。

    

 

  关于GDT于IDT初始化的代码,它们可以实现鼠标的移动,现在我还没有去写它,此次的任务只是显示。

  最新的Antz系统镜像和代码已经上传到我的github了,这里只列举出剩余的主要代码。

#include <stdio.h>
struct BOOTINFO {
    char cyls, leds, vmode, reserve;
    short scrnx, scrny;
    char *vram;
};

struct SEGMENT_DESCRIPTOR {
    short limit_low, base_low;
    char base_mid, access_right;
    char limit_high, base_high;
};

struct GATE_DESCRIPTOR {
    short offset_low, selector;
    char dw_count, access_right;
    short offset_high;
};

void init_gdtidt(void);
void set_segmdesc(struct SEGMENT_DESCRIPTOR *sd, unsigned int limit, int base, int ar);
void set_gatedesc(struct GATE_DESCRIPTOR *gd, int offset, int selector, int ar);
void load_gdtr(int limit, int addr);
void load_idtr(int limit, int addr);

void HariMain(void)
{
    struct BOOTINFO *binfo = (struct BOOTINFO *) 0x0ff0;
    char s[40], mcursor[256];
    int mx, my;

    init_palette();
    init_screen(binfo->vram, binfo->scrnx, binfo->scrny);


    mx = (binfo->scrnx - 16) / 2; /* 计算画面的中心坐标*/
    my = (binfo->scrny - 28 - 16) / 2;
    init_mouse_cursor8(mcursor, COL8_00FFFF);
    putblock8_8(binfo->vram, binfo->scrnx, 16, 16, mx+20, my, mcursor, 16);
    for (;;) {
        io_hlt();
    }
}

void set_palette(int start, int end, unsigned char *rgb)
{
    int i, eflags;
    eflags = io_load_eflags();    /* 记录中断许可标志的值 */
    io_cli();                     /* 将中断许可标志置为0,禁止中断 */
    io_out8(0x03c8, start);
    for (i = start; i <= end; i++) {
        io_out8(0x03c9, rgb[0] / 4);
        io_out8(0x03c9, rgb[1] / 4);
        io_out8(0x03c9, rgb[2] / 4);
        rgb += 3;
    }
    io_store_eflags(eflags);    /* 复原中断许可标志 */
    return;
}

void boxfill8(unsigned char *vram, int xsize, unsigned char c, int x0, int y0, int x1, int y1)
{
    int x, y;
    for (y = y0; y <= y1; y++) {
        for (x = x0; x <= x1; x++)
            vram[y * xsize + x] = c;
    }
    return;
}

void init_screen(char *vram, int x, int y)
{
    boxfill8(vram, x, COL8_00FFFF,  0,     0,      x,         y);
    boxfill8(vram, x, COL8_C6C6C6,  0,     0,     x/2,   y);
    boxfill8(vram, x, COL8_000000,  3,     15,     x/2-3, y-3);

    boxfill8(vram, x, COL8_008400,  165    ,     30,     215,     40);
    boxfill8(vram, x, COL8_008400,  265    ,     30,     315,     40);

    boxfill8(vram, x, COL8_008400,  190    ,     60,     200,     70);
    boxfill8(vram, x, COL8_008400,  280    ,     60,     290,     70);

    boxfill8(vram, x, COL8_008400,  235    ,     65,     245,     100);

    boxfill8(vram, x, COL8_008400,  235-15    ,     65+40,     245-15,     85+30);
    boxfill8(vram, x, COL8_008400,  235    ,     65+40,     245,     85+30);
    boxfill8(vram, x, COL8_008400,  235+15    ,     65+40,     245+15,     85+30);

    boxfill8(vram, x, COL8_008400,  200    ,     130,     280,     140);
    boxfill8(vram, x, COL8_008400,  200    ,     130,     210,     160);
    boxfill8(vram, x, COL8_008400,  270    ,     130,     280,     160);
    boxfill8(vram, x, COL8_008400,  200    ,     150,     280,     160);

    return;
}

void putfont8(char *vram, int xsize, int x, int y, char c, char *font)
{
    int i;
    char *p, d /* data */;
    for (i = 0; i < 16; i++) {
        p = vram + (y + i) * xsize + x;
        d = font[i];
        if ((d & 0x80) != 0) { p[0] = c; }
        if ((d & 0x40) != 0) { p[1] = c; }
        if ((d & 0x10) != 0) { p[3] = c; }
        if ((d & 0x20) != 0) { p[2] = c; }
        if ((d & 0x08) != 0) { p[4] = c; }
        if ((d & 0x04) != 0) { p[5] = c; }
        if ((d & 0x02) != 0) { p[6] = c; }
        if ((d & 0x01) != 0) { p[7] = c; }
    }
    return;
}

void putfonts8_asc(char *vram, int xsize, int x, int y, char c, unsigned char *s)
{
    extern char hankaku[4096];
    /* C语言中,字符串都是以0x00结尾 */
    for (; *s != 0x00; s++) {
        putfont8(vram, xsize, x, y, c, hankaku + *s * 16);
        x += 8;
    }
    return;
}

void init_mouse_cursor8(char *mouse, char bc)
/* マウスカーソルを準備(16x16) */
{
    static char cursor[16][16] = {
    //鼠标图形
    };
    int x, y;

    for (y = 0; y < 16; y++) {
        for (x = 0; x < 16; x++) {
            if (cursor[y][x] == '*') {
                mouse[y * 16 + x] = COL8_000000;
            }
            if (cursor[y][x] == 'O') {
                mouse[y * 16 + x] = COL8_FFFFFF;
            }
            if (cursor[y][x] == '.') {
                mouse[y * 16 + x] = bc;
            }
        }
    }
    return;
}

void putblock8_8(char *vram, int vxsize, int pxsize,
    int pysize, int px0, int py0, char *buf, int bxsize)
{
    int x, y;
    for (y = 0; y < pysize; y++) {
        for (x = 0; x < pxsize; x++) {
            vram[(py0 + y) * vxsize + (px0 + x)] = buf[y * bxsize + x];
        }
    }
    return;
}

 

目录
相关文章
|
1月前
|
安全 Linux 开发者
探索操作系统的心脏:内核与用户空间的交互
在数字世界的每一次点击和命令背后,隐藏着一个复杂而精妙的操作系统世界。本文将带你走进这个世界的核心,揭示内核与用户空间的神秘交互。通过深入浅出的解释和直观的代码示例,我们将一起理解操作系统如何协调硬件资源,管理进程和内存,以及提供文件系统服务。无论你是编程新手还是资深开发者,这篇文章都将为你打开一扇通往操作系统深层原理的大门。让我们一起开始这段旅程,探索那些支撑我们日常数字生活的技术基石吧!
54 6
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
2月前
|
存储 Linux 开发者
探索操作系统的内核——从理论到实践
操作系统是计算机科学的核心,它像一位默默无闻的指挥官,协调着硬件和软件之间的复杂关系。本文将深入操作系统的心脏——内核,通过直观的解释和丰富的代码示例,揭示其神秘面纱。我们将一起学习进程管理、内存分配、文件系统等关键概念,并通过实际代码,体验内核编程的魅力。无论你是初学者还是有经验的开发者,这篇文章都将带给你新的视角和知识。
|
1月前
|
机器学习/深度学习 人工智能 物联网
操作系统的心脏——深入理解内核机制
在本文中,我们揭开操作系统内核的神秘面纱,探索其作为计算机系统核心的重要性。通过详细分析内核的基本功能、类型以及它如何管理硬件资源和软件进程,我们将了解内核是如何成为现代计算不可或缺的基础。此外,我们还会探讨内核设计的挑战和未来趋势,为读者提供一个全面的内核知识框架。
|
1月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
2月前
|
存储 调度 开发者
探索操作系统的心脏:内核与用户空间的交互之旅
在数字世界的无限广阔中,操作系统扮演着枢纽的角色,连接硬件与软件,支撑起整个计算生态。本篇文章将带领读者深入操作系统的核心——内核,揭示其与用户空间的神秘交互。我们将透过生动的例子和易于理解的比喻,深入浅出地探讨这一复杂主题,旨在为非专业读者揭开操作系统的神秘面纱,同时为有一定基础的读者提供更深层次的认识。从进程管理到内存分配,从文件系统到设备驱动,每一个环节都是精确而优雅的舞蹈,它们共同编织出稳定而高效的计算体验。让我们开始这场奇妙之旅,一探操作系统背后的科学与艺术。
38 5
|
2月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
53 2
|
2月前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
61 1
|
1月前
|
C语言
探索操作系统的心脏:内核与用户空间的交互
本文将深入操作系统的核心,揭示其内部结构与运作原理。我们将通过浅显易懂的方式,探讨操作系统的两个主要组成部分:内核和用户空间。文章旨在帮助读者理解这两者之间的界限以及它们如何协同工作来管理计算机资源。我们还将介绍系统调用的概念,并展示一个简单的代码示例,以便读者更好地理解这一过程。