sklearn调包侠之支持向量机

简介: 算法原理对于支持向量机原理,可参考该系列博客(https://www.cnblogs.com/pinard/p/6111471.html)。
img_68c465f2d176c613407509830531ca1b.png

算法原理

对于支持向量机原理,可参考该系列博客(https://www.cnblogs.com/pinard/p/6111471.html)。

实战——乳腺癌检测

数据导入

本次实战使用前文中的乳腺癌数据集,如图所示。

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print(cancer.DESCR)
img_f68c5b79e7af2c679e5b437866b5e813.png
切分数据集
X = cancer.data
y = cancer.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=33)
模型训练与评估

支持向量机算法使用sklearn.svm 模块中的SVC方法。常用的参数如下:

  • C:默认为1.0,是对于错误的惩罚项。
  • kernel:指定算法的核函数,默认为'rbf',常用的有'linear','poly','rbf','sigmoid','precomputed'。
  • degree:多项式核函数的次数('poly'),默认为3。 其他核函数会将其忽略。
  • gamma:'rbf','poly'和'sigmoid'的核系数。 如果gamma是'auto',那么将使用1 / n_features。

这里的数据较小,使用高斯核函数很容易过拟合:

from sklearn.svm import SVC
clf = SVC(C=1.0, kernel='rbf', gamma=0.1)
clf.fit(X_train, y_train)
clf.score(X_train, y_train)
clf.score(X_test, y_test)

# result
# 1.0
# 0.6228070175438597

当然我们也可以通过网格搜索获得适合的gamma值。

import numpy as np
from sklearn.model_selection import GridSearchCV

param_grid = {'gamma':np.linspace(0, 0.0003, 30)}
clf = GridSearchCV(SVC(), param_grid, cv=5)
clf.fit(X, y)
print(clf.best_params_, clf.best_score_)

# result
# {'gamma': 0.00011379310344827585} 0.936731107206

最后,使用多项式核函数拟合:

clf = SVC(C=1.0, kernel='poly', degree=2)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print(train_score, test_score)

# result
# 0.98021978022 0.964912280702
相关文章
|
7月前
|
机器学习/深度学习 算法 API
Sklearn中的监督学习全览:从线性回归到SVM
【7月更文第23天】 在机器学习的广阔领域中,监督学习占据着举足轻重的地位,它通过已标记的数据集学习输入与输出之间的映射关系,进而对未知数据进行预测。`scikit-learn`(简称sklearn)作为Python中最受欢迎的机器学习库之一,提供了丰富的监督学习算法。本篇文章将带您深入探索sklearn中的监督学习世界,从简单的线性回归到复杂的支撑向量机(SVM),并通过实战代码示例,让您对这些算法有更直观的理解。
101 8
|
8月前
|
机器学习/深度学习 算法 Windows
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
【阿旭机器学习实战】【34】使用SVM检测蘑菇是否有毒--支持向量机
|
9月前
|
机器学习/深度学习 算法 数据可视化
使用Python实现支持向量机算法
使用Python实现支持向量机算法
122 0
|
9月前
|
算法 Python
使用Python实现朴素贝叶斯算法
使用Python实现朴素贝叶斯算法
121 0
|
机器学习/深度学习 决策智能 计算机视觉
基于SVM的时间序列预测-python实现(附源码)
基于SVM的时间序列预测-python实现(附源码)
332 0
|
机器学习/深度学习 算法 数据挖掘
瞎聊机器学习——DBSCAN算法
瞎聊机器学习——DBSCAN算法
|
机器学习/深度学习 算法
瞎聊机器学习——全方位理解支持向量机(SVM)
瞎聊机器学习——全方位理解支持向量机(SVM)
|
机器学习/深度学习 数据采集 人工智能
基于sklearn随机森林算法探究肥胖的成因(二)
基于sklearn随机森林算法探究肥胖的成因
793 0
基于sklearn随机森林算法探究肥胖的成因(二)
|
机器学习/深度学习 传感器 算法
【分类-SVM】基于哈里斯鹰算法优化支持向量机SVM实现分类附matlab的代码
【分类-SVM】基于哈里斯鹰算法优化支持向量机SVM实现分类附matlab的代码
|
机器学习/深度学习 C++
Matlab之DNN:基于Matlab利用神经网络模型(epochs=10000000)预测勒布朗詹姆斯的2018年总决赛(骑士VS勇士)第一场得分、篮板、助攻
Matlab之DNN:基于Matlab利用神经网络模型(epochs=10000000)预测勒布朗詹姆斯的2018年总决赛(骑士VS勇士)第一场得分、篮板、助攻
Matlab之DNN:基于Matlab利用神经网络模型(epochs=10000000)预测勒布朗詹姆斯的2018年总决赛(骑士VS勇士)第一场得分、篮板、助攻