Java并发编程实战系列8之线程池的使用

简介: ThreadPoolExecutor UML图:imageimage8.1 在任务和执行策略之间隐形耦合避免Thread starvation deadlock8.

ThreadPoolExecutor UML图:

img_e5986e7df7f0ac965fa9d1919ce58505.png

8.1 在任务和执行策略之间隐形耦合

避免Thread starvation deadlock

8.2 设置线程池大小

8.3 配置ThreadPoolExecutor

构造函数如下:

public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler) { ... } 

  • 核心和最大池大小:如果运行的线程少于 corePoolSize,则创建新线程来处理请求(即一个Runnable实例),即使其它线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。
  • 保持活动时间:如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。
  • 排队:如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列BlockingQueue,而不添加新的线程。
  • 被拒绝的任务:当 Executor 已经关闭,或者队列已满且线程数量达到maximumPoolSize时(即线程池饱和了),请求将被拒绝。这些拒绝的策略叫做Saturation Policy,即饱和策略。包括AbortPolicy, CallerRunsPolicy, DiscardPolicy, and DiscardOldestPolicy.

另外注意:

  • 如果运行的线程少于 corePoolSize,ThreadPoolExecutor 会始终首选创建新的线程来处理请求;注意,这时即使有空闲线程也不会重复使用(这和数据库连接池有很大差别)。
  • 如果运行的线程等于或多于 corePoolSize,则 ThreadPoolExecutor 会将请求加入队列BlockingQueue,而不添加新的线程(这和数据库连接池也不一样)。
  • 如果无法将请求加入队列(比如队列已满),则创建新的线程来处理请求;但是如果创建的线程数超出 maximumPoolSize,在这种情况下,请求将被拒绝。

newCachedThreadPool使用了SynchronousQueue,并且是无界的。

线程工厂ThreadFactory

8.4 扩展ThreadPoolExecutor

重写beforeExecute和afterExecute方法。

8.5 递归算法的并行化

实际就是类似Number of Islands或者N-Queens等DFS问题的一种并行处理。

串行版本如下:

public class SequentialPuzzleSolver <P, M> {
    private final Puzzle<P, M> puzzle;
    private final Set<P> seen = new HashSet<P>();

    public SequentialPuzzleSolver(Puzzle<P, M> puzzle) {
        this.puzzle = puzzle;
    }

    public List<M> solve() {
        P pos = puzzle.initialPosition();
        return search(new PuzzleNode<P, M>(pos, null, null));
    }

    private List<M> search(PuzzleNode<P, M> node) {
        if (!seen.contains(node.pos)) {
            seen.add(node.pos);
            if (puzzle.isGoal(node.pos))
                return node.asMoveList();
            for (M move : puzzle.legalMoves(node.pos)) {
                P pos = puzzle.move(node.pos, move);
                PuzzleNode<P, M> child = new PuzzleNode<P, M>(pos, move, node);
                List<M> result = search(child);
                if (result != null)
                    return result;
            }
        }
        return null;
    }
}

并行版本如下:

public class ConcurrentPuzzleSolver <P, M> {
    private final Puzzle<P, M> puzzle;
    private final ExecutorService exec;
    private final ConcurrentMap<P, Boolean> seen;
    protected final ValueLatch<PuzzleNode<P, M>> solution = new ValueLatch<PuzzleNode<P, M>>();

    public ConcurrentPuzzleSolver(Puzzle<P, M> puzzle) {
        this.puzzle = puzzle;
        this.exec = initThreadPool();
        this.seen = new ConcurrentHashMap<P, Boolean>();
        if (exec instanceof ThreadPoolExecutor) {
            ThreadPoolExecutor tpe = (ThreadPoolExecutor) exec;
            tpe.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardPolicy());
        }
    }

    private ExecutorService initThreadPool() {
        return Executors.newCachedThreadPool();
    }

    public List<M> solve() throws InterruptedException {
        try {
            P p = puzzle.initialPosition();
            exec.execute(newTask(p, null, null));
            // block until solution found
            PuzzleNode<P, M> solnPuzzleNode = solution.getValue();
            return (solnPuzzleNode == null) ? null : solnPuzzleNode.asMoveList();
        } finally {
            exec.shutdown();
        }
    }

    protected Runnable newTask(P p, M m, PuzzleNode<P, M> n) {
        return new SolverTask(p, m, n);
    }

    protected class SolverTask extends PuzzleNode<P, M> implements Runnable {
        SolverTask(P pos, M move, PuzzleNode<P, M> prev) {
            super(pos, move, prev);
        }

        public void run() {
            if (solution.isSet()
                    || seen.putIfAbsent(pos, true) != null)
                return; // already solved or seen this position
            if (puzzle.isGoal(pos))
                solution.setValue(this);
            else
                for (M m : puzzle.legalMoves(pos))
                    exec.execute(newTask(puzzle.move(pos, m), m, this));
        }
    }
}
目录
相关文章
|
2月前
|
IDE Java 编译器
java编程最基础学习
Java入门需掌握:环境搭建、基础语法、面向对象、数组集合与异常处理。通过实践编写简单程序,逐步深入学习,打牢编程基础。
233 1
|
2月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
174 6
|
3月前
|
SQL Java 数据库
2025 年 Java 从零基础小白到编程高手的详细学习路线攻略
2025年Java学习路线涵盖基础语法、面向对象、数据库、JavaWeb、Spring全家桶、分布式、云原生与高并发技术,结合实战项目与源码分析,助力零基础学员系统掌握Java开发技能,从入门到精通,全面提升竞争力,顺利进阶编程高手。
711 1
|
2月前
|
安全 前端开发 Java
从反射到方法句柄:深入探索Java动态编程的终极解决方案
从反射到方法句柄,Java 动态编程不断演进。方法句柄以强类型、低开销、易优化的特性,解决反射性能差、类型弱、安全性低等问题,结合 `invokedynamic` 成为支撑 Lambda 与动态语言的终极方案。
167 0
|
2月前
|
安全 Java 开发者
告别NullPointerException:Java Optional实战指南
告别NullPointerException:Java Optional实战指南
278 119
|
3月前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
471 100
|
3月前
|
人工智能 Java API
Java AI智能体实战:使用LangChain4j构建能使用工具的AI助手
随着AI技术的发展,AI智能体(Agent)能够通过使用工具来执行复杂任务,从而大幅扩展其能力边界。本文介绍如何在Java中使用LangChain4j框架构建一个能够使用外部工具的AI智能体。我们将通过一个具体示例——一个能获取天气信息和执行数学计算的AI助手,详细讲解如何定义工具、创建智能体并处理执行流程。本文包含完整的代码示例和架构说明,帮助Java开发者快速上手AI智能体的开发。
1206 8
|
3月前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
578 12
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
295 0
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。