谈谈Mysql索引优化不得不提防的坑

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 前言 在之前的文章《聊聊Mysql优化之索引优化》中,笔者简单介绍了Mysql索引优化的原理和一些使用场景,然而Mysql索引优化的内容还远远不止这些。

前言

 

在之前的文章《聊聊Mysql优化之索引优化》中,笔者简单介绍了Mysql索引优化的原理和一些使用场景,然而Mysql索引优化的内容还远远不止这些。在实际工作中,我们有时候会碰到明明已经建了索引,但是查询速度还是上不去的问题,这时候就要当心了,有可能你的查询语句根本就没使用到索引,因为Mysql索引在某些情况下会失效,今天我将为大家介绍下Mysql索引优化中不得不提防的坑。

 

为了方便下文讲解,我们先建2张表:user表和address表(由于不同MySQL版本与执行引擎的优化方法不一样,所以本文所举的例子都是针对MySQL 5.7.18版本,InnoDB存储引擎而言的),建表语句如下:

 

CREATE TABLE `user` (

`id`  varchar(255) NOT NULL ,

`phone`  varchar(255) NULL ,

`age`  int NULL ,

`name`  varchar(255) NULL ,

PRIMARY KEY (`id`) ,

INDEX `normal_index_phone` (`phone`) USING BTREE ,

INDEX `normal_index_age` (`age`) USING BTREE 

)

ENGINE=InnoDB

DEFAULT CHARACTER SET=utf8;

 

从上述SQL语句可知,user表一共有4个字段,id为varchar类型,最大长度为255,且为主键;phone为varchar类型,最大长度为255;name为varchar类型,最大长度为255;age为int类型。此外,我们在phone字段上建了一个普通的B-tree索引normal_index_phone;在age字段上建了一个普通的B-tree索引normal_index_age。关于B-tree索引的介绍,可以阅读文章《聊聊Mysql优化之索引优化》。

 

接下来我们往这张表插入一批数据,数据概要如下:

 

表的记录数为百万级别:

 

由于是实验目的,所以手机号跟姓名是随意填写的,此外id的特点是前缀“id”+序号,当然在实际工作中我们很少会这样设计id,之所以这样设计纯粹是为了试验目的,切勿生搬硬套,接下来开始我们的实验。

 

实验一:查询手机号为12622717935的用户信息

 

大家可能心里会想,这也太简单了吧,一个where语句就搞定了。没错,只要是有一点sql基础的人都能很容易写出这句sql。于是,有些同学很快就写出了以下sql:

 

 SELECT * FROM `user` WHERE phone=12622717935

 

查询结果如下图:

 

数据顺利查出来了,但是这样就完事了吗?我可以告诉你这样做虽然可以查询出数据,但是却不是最优的写法。大家可以回过头看看上文的建表语句,phone字段是varchar类型的,而上述我们写的sql语句的where条件是一个数字,并不是字符串,因为没有带上单引号。在这种情况下MySQL是不会使用索引去查询数据的。不信的话我们用EXPLAIN语句查询下该语句的执行计划。关于EXPLAIN语句的用法在下文会进行简要介绍,有兴趣的同学可以自己去深入了解下。接下来我们执行以下EXPLAIN语句:

 

EXPLAIN SELECT * FROM `user` WHERE phone=12622717935

 

结果输出如下:

 

在EXPLAIN输出中我们重点关注的是key字段、rows字段和type字段。key字段表示执行引擎最终选择使用的索引,该字段为空,说明该查询没有选择索引查询。再看rows字段,rows字段表示执行引擎预估要扫描的记录数,注意是预估的,并非绝对精确,这里可以看到扫描的行数非常多,接近全表行数了。再看type字段,其值为ALL,表示MySQL将进行全表扫描。

 

以上种种表明该查询并没有使用我们在phone字段上建的B-tree索引,那有没有办法既能查询出数据又能使用到索引呢?当然有,而且很简单,只要把上述查询语句稍微修改下就可以了:

 

SELECT * FROM `user` WHERE phone='12622717935'

 

修改后的sql语句与之前的sql语句相比,仅仅是在手机号前后多了个单引号而已。有同学可能会有疑问,这样就能使用到索引了吗?我们再EXPLAIN下就知道了:

 

EXPLAIN SELECT * FROM `user` WHERE phone='12622717935'

 

其执行结果如下:

 

我们看下key字段,这个时候值为normal_index_phone,也就是phone字段上的B-tree索引,说明MySQL选中了normal_index_phone索引进行查询。再看rows字段,这个时候预估的扫描记录数变为1了,不再是之前的全表扫描了。

 

因此,对于字符串字段的查询,在查询条件中一定要使用单引号括起来,这是一个好习惯。

 

实验二:查询id序号为1000的用户信息

 

由于id字段具有一定的规则:前缀“id”+序号。因此,这里至少有2个方法可以查询出数据,一个方法是查询id为“id1000”的用户,另一个方法是利用字符串截取函数SUBSTR截取“id”字符串后面的整数,再查询该整数等于1000的用户。在实际工作中,相信绝大多数人都会使用第一种方式,这里因为实验需要才引入第二种查询方式,实际上很少人会用第二种方式去实现的。那么这两种实现方式有什么不同呢?我们EXPLAIN一下就知晓了。首先看下第一种方式,我们执行下列EXPLAIN语句:

 

EXPLAIN SELECT * FROM `user` WHERE id ='id1000';

 

结果输出如下:

 

首先看key字段,为PRIMARY,说明使用到了主键索引。再看rows字段,值为1,说明预估的扫描行数为1。执行计划看起来非常理想。接下来我们看下第二种实现方式,我们执行下列EXPLAIN语句:

 

EXPLAIN SELECT * FROM `user` WHERE SUBSTR(id,3) =1000;

 

结果输出如下:

 

首先看key字段为空,说明查询引擎没有使用到索引。再看rows字段,值非常大,已经接近总行数了。接着看type字段,值为ALL,说明使用了全表扫描。

 

观察两句sql的区别,无非就是第二句sql在索引列上使用了函数,导致查询引擎无法使用索引查询。因此,在索引列上进行条件查询时,一定要保证索引列是独立的,独立的意思是索引列不能使用函数,也不能是表达式的一部分。在索引列上使用函数就是上述第二种查询方式犯的错。至于说索引列不能是表达式的一部分,简单理解就是表达式不能参与列加减乘除等运算。比如查询年龄等于70的用户,有下列2种sql写法(第二种写法基本不会有人这样写,同样也是出于实验目的才列出来的):

 

select * from user where age =70 limit 1;

 

select * from user where age+1 =71 limit 1;

 

第二句sql的索引列是表达式的一部分,因此第二句sql没法使用到索引,而第一句则可以。不信的话大家可以看下执行计划,在此就不再做分析了:

 

 

 

总结


本文通过2个小案例讲解了Mysql索引优化中经常碰到的坑,并简要介绍了如何通过EXPLAIN语句去分析sql语句的执行计划,从而对症下药,进行合适的索引优化。当然关于Mysql索引优化可以讲的内容还有不少,后面会再进行深入探讨。

如果觉得这篇文章对你有帮助,可以扫描下方二维码,关注本人公众号,获得更多优质文章推送。

 

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
5月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
5月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
204 4
|
7月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
6月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
280 0
|
9月前
|
关系型数据库 MySQL 数据库
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
|
4月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
233 6
|
10月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
5月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
151 2
|
6月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
184 9
|
5月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
243 0

推荐镜像

更多