Attention-based Extraction of Structured Information from Street View Imagery:基于注意力的街景图像提取结构化信息

简介: 基于注意力的街景图像提取结构化信息一种用于真实图像文本提取问题的TensorFlow模型。该文件夹包含在FSNS数据集数据集上训练新的注意OCR模型所需的代码,以在法国转录街道名称。

基于注意力的街景图像提取结构化信息

一种用于真实图像文本提取问题的TensorFlow模型。

该文件夹包含在FSNS数据集数据集上训练新的注意OCR模型所需的代码,以在法国转录街道名称。 您还可以使用它来根据自己的数据进行培训。

更多细节可以在我们的论文中找到:

“从街景图像注意为基础提取结构化信息”

项目地址:https://github.com/tensorflow/models/tree/master/attention_ocr

Attention-based Extraction of Structured Information from Street View Imagery

A TensorFlow model for real-world image text extraction problems.

This folder contains the code needed to train a new Attention OCR model on the FSNS dataset dataset to transcribe street names in France. You can also use it to train it on your own data.

More details can be found in our paper:

“Attention-based Extraction of Structured Information from Street View Imagery”
http://www.tensorflownews.com/

目录
相关文章
|
机器学习/深度学习 自然语言处理 达摩院
Rethinking Information Extraction :信息抽取的现状与未来
​ ##引言 从计算到感知再到认知是业内学者都认同的人工智能技术发展路径。机器具备认知智能,进而实现推理、规划乃至联想和创作,在一定程度上需要一个充满知识的大脑,而信息抽取是获取知识的重要途径之一。 在具体的业务场景如搜索推荐,结构化的领域知识有利于实现细粒度文本理解,有利于实现精准的复杂问答,有利于
5614 0
|
6月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
机器学习/深度学习 存储 自然语言处理
RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level 论文解读
在文档级事件提取(DEE)任务中,事件论元总是分散在句子之间(跨句子问题),多个事件可能位于一个文档中(多事件问题)。在本文中,我们认为事件论元的关系信息对于解决上述两个问题具有重要意义,并提出了一个新的DEE框架
143 0
|
机器学习/深度学习 算法 数据可视化
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
 过去几年,在经典数据集PASCAL上,物体检测的效果已经达到 一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上 下文环境的复杂集成系统。在这篇论文里,我们提出了一种简单并且 可扩展的检测算法,可以在VOC2012最好结果的基础上将mAP值提 高30%以上——达到了53.3%。
172 0
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
|
机器学习/深度学习 人工智能 自然语言处理
论文解读系列| 04:【NER】FLAT模型详解
FLAT也是一种将词汇信息融入character-based模型的解决方案。有2个创新点(1)将lattice结构转为由spans组成的平铺结构,每个span可以是字符或者词及其在原始lattice结构中的位置;(2)基于Transformer设计了一种巧妙position encoding来充分利用lattice结构信息,从而无损地引入词汇信息。
|
存储 算法 数据挖掘
多媒体信息处理学习笔记-3. Feature Indexing and Retrieval
多媒体信息处理学习笔记-3. Feature Indexing and Retrieval
121 0
多媒体信息处理学习笔记-3. Feature Indexing and Retrieval
|
机器学习/深度学习 自然语言处理 算法
基于不同监督强度分类的语义分割综述:A Breif Survey on Semantic Segmentation with Deep Learning
引言:语义分割是计算机视觉中一项具有挑战性的任务。近年来,深度学习技术的应用大大提高了语义分割的性能。人们提出了大量的新方法。本文旨在对基于深度学习的语义分割方法的研究进展进行简要综述。全文将该领域的研究按其监督程度进行了分类,即完全监督方法、弱监督方法和半监督方法。文章还讨论了当前研究的共同挑战,并提出了该领域的几个有价值的发展研究点。本综述旨在让读者了解深度学习时代语义分割研究的进展和面临的挑战。
584 0
|
自然语言处理 知识图谱
通用信息抽取 UIE(Universal Information Extraction)
通用信息抽取 UIE(Universal Information Extraction)
1108 0
通用信息抽取 UIE(Universal Information Extraction)
|
机器学习/深度学习 编解码 数据可视化
Text to image论文精读 从菜谱描述自动生成菜肴照片 CookGAN: Causality based Text-to-Image Synthesis(基于因果关系的文本图像合成 )
文章被2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)会议录用。 论文地址:[https://ieeexplore.ieee.org/document/9157040/citations#citations](https://ieeexplore.ieee.org/document/9157040/citations#citations) CookGAN旨在解决因果关系效应。食物图像的因果演化隐含在一个连续的网络中。 本博客是精读这篇论文的报告,包含一些个人理解、知识拓展和总结。
Text to image论文精读 从菜谱描述自动生成菜肴照片 CookGAN: Causality based Text-to-Image Synthesis(基于因果关系的文本图像合成 )
|
机器学习/深度学习 算法 算法框架/工具
传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking
传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking
178 2
传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking

热门文章

最新文章