【75位联合作者Nature重磅】AI药神:机器学习模型有望提前五年预测白血病!

简介: 来自全球多家科研机构的75位科学家在《自然》发表了一项重磅研究:使用血液检测和机器学习技术,可以预测健康个体是否有患急性骨髓性白血病(AML)的风险。这项研究意味着我们可以提早发现AML的高风险人群并进行监测,同时可以进行研发,寻找降低该疾病患病几率的方案。

【新智元导读】来自全球多家科研机构的75位科学家在《自然》发表了一项重磅研究:使用血液检测和机器学习技术,可以预测健康个体是否有患急性骨髓性白血病(AML)的风险。这项研究意味着我们可以提早发现AML的高风险人群并进行监测,同时可以进行研发,寻找降低该疾病患病几率的方案。

本周,《自然》上发表了一项重磅研究:一个由来自全球多家科研机构的白血病科学家组成的研究小组使用血液检测和机器学习技术,来预测健康个体是否有患急性骨髓性白血病(AML)的风险。这项研究意味着我们可以提早发现AML的高风险人群并进行监测,同时可以进行研发,寻找降低该疾病患病几率的方案。

image

来自全球多家科研机构的75位作者在Nature发表论文

急性骨髓性白血病(AML)是一种进展迅速、危及生命的血液肿瘤,可以影响所有年龄段的人群。AML患者的癌细胞在骨髓中迅速增殖,并妨碍正常血液细胞的产生,导致出现出血和感染症状,甚至危及生命。近几十年以来,AML主流治疗手段几乎没有任何变化,虽然少数患者被治愈,但对于绝大多数患者来说,这仍然是一种绝症。

image

急性骨髓性白血病是一种进展迅速且危及生命的癌症(图片来源:123RF)

为了揭示AML的病因,研究人员使用一项欧洲大型人口健康及生活方式研究中收集的数据及血液样本来进行调查。这项大型研究在20年内追踪了55万人的数据,其中有一些人后来患上了AML。利用这些人的血液样本数据,研究人员能够回顾在AML出现几年之前,这些患者血液中存在的基因变化。

研究人员开发了一种基因测序工具,针对那些与AML相关的已知基因,对124名AML患者的血液DNA进行了测序,并与676名未患有AML或相关癌症的人进行了对比。值得注意的是,他们发现许多后来患有AML的人基因中出现了特殊的遗传变化,而未患有AML的人则没有出现这种变化。并且,那些后来患上AML的患者基因中的突变数量更多,且这些突变在他们血液细胞中出现的比例也更高。

接下来,研究人员应用了机器学习技术,在电子健康记录中常规记录变量的基础之上,构建了一个AML预测模型。该模型在进行诊断前的6-12个月内,就能够对AML进行预测,其灵敏度和特异性分别达到25.7%和98.2%。该模型在不同年龄组之间的表现是一致的。

image

使用机器学习技术构建的AML预测模型结果示意图(图片来源:《Nature》)

“通常来说,急性骨髓性白血病是一种突发性疾病,”该论文的作者之一、来自Wellcome Sanger Institute和剑桥大学的Grace Collord博士表示:“而此次我们发现,它的病因在患上该疾病的五年之前就可以检测到,这一点让我们非常惊讶。这项研究为我们研发能够检测AML高风险人群的方案,提供了非常重要的科学依据。”

研究人员还表示,希望在这些研究结果的基础上,可以开展大型筛查检测,从而识别出那些具有AML高风险的人群,并推动预防AML进一步发展的相关研究,造福更多的患者。随着人工智能的飞速发展和医疗技术的不断进步,希望这项研究在未来可以为我们带来战胜白血病的新方法。

论文地址:https://www.nature.com/articles/s41586-018-0317-6
参考资料:
[1] Roots of leukemia reveal possibility of predicting people at risk
[2] Leukemia researchers discover way to predict healthy people at risk for developing AML
[3] Prediction of acute myeloid leukaemia risk in healthy individuals

新智元:
原文发布时间为:2018-07-11
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。
原文链接:【75位联合作者Nature重磅】AI药神:机器学习模型有望提前五年预测白血病!

相关文章
|
5月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
1036 109
|
6月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
392 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
7月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
952 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
7月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
520 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
6月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
7月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
8月前
|
存储 人工智能 运维
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
345 6
|
8月前
|
存储 机器学习/深度学习 自然语言处理
避坑指南:PAI-DLC分布式训练BERT模型的3大性能优化策略
本文基于电商搜索场景下的BERT-Large模型训练优化实践,针对数据供给、通信效率与计算资源利用率三大瓶颈,提出异步IO流水线、梯度压缩+拓扑感知、算子融合+混合精度等策略。实测在128卡V100集群上训练速度提升3.2倍,GPU利用率提升至89.3%,训练成本降低70%。适用于大规模分布式深度学习任务的性能调优。
403 3
|
8月前
|
人工智能 监控 测试技术
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!

热门文章

最新文章