TensorFlow——训练神经网络模型

简介: TensorFlow训练神经网络模型的步骤:(1)定义神经网络的结构和向前传播的输出结果(2)定义损失函数以及选择反向传播优化的算法(3)生成会话(tf.
TensorFlow训练神经网络模型的步骤:
(1)定义神经网络的结构和向前传播的输出结果
(2)定义损失函数以及选择反向传播优化的算法
(3)生成会话(tf.Session),并且在训练数据上反复运行反向传播优化算法

例:下面是一个完整的程序来训练神经网络解决二分类问题
import tensorflow as tf
import numpy as np    #通过NumPy工具包生成模拟数据

batch_size=8     #定义训练数据batch的大小
#定义神经网络的参数
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))

#定义placeholder存放输入数据
#在shape的一个维度上使用None可以方便使用不大的batch大小
x_data=tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_data=tf.placeholder(tf.float32,shape=(None,1),name='y-input')

#定义神经网络向前传播过程
a=tf.matmul(x_data,w1)
y=tf.matmul(a,w2)

#定义损失函数和反向传播算法
cross_entropy=-tf.reduce_mean(y_data*tf.log(tf.clip_by_value(y,1e-10,1.0)))
train_step=tf.train.AdadeltaOptimizer(0.001).minimize(cross_entropy)

#通过随机数生成一个模拟数据集
rdm=np.random.RandomState(1)
dataset_size=128
X=rdm.rand(dataset_size,2)
#定义规则来给出样本的标签。
Y=[[int(x1+x2<1)] for (x1,x2) in X]
#创建一个会话来运行TensorFlow程序
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) #初始化变量
    print("训练之前的神经网络参数值:")
    print(sess.run(w1))  #输出训练之前神经网络参数的值
    print(sess.run(w2))

    #设置训练5000次
    for i in range(5000):
        start=(i*batch_size)%dataset_size #每次选取batch_size个样本进行训练
        end=min(start+batch_size,dataset_size)
        #通过选取的样本训练神经网络并更新参数
        sess.run(train_step,feed_dict={x_data:X[start:end],y_data:Y[start:end]})
        #每隔一段时间计算在所有数据上的交叉熵并输出
        if i%1000==0:
            total_cross_entropy=sess.run(cross_entropy,feed_dict={x_data:X,y_data:Y})
            print("After %d training steps,cross entropy on all data is %g" %(i,total_cross_entropy))

    #输出训练5000次之后的神经网络参数值
    print("训练之后的神经网络参数值:")
    print(sess.run(w1))
    print(sess.run(w2))

输出结果为:


详解交叉熵损失函数
cross_entropy=-tf. reduce_mean (y_data*tf. log (tf. clip_by_value (y, 1e-10 , 1.0 )))

(1)tf.clip_by_value()函数
#tf.clip_by_value() 函数可以将一个张量中的数值限制在一个范围之内,这样可以避免一些运算错误
v1=tf. constant ([[ 1.0 , 2.0 , 3.0 ],[ 4.0 , 5.0 , 6.0 ]])
with tf. Session () as sess:
print (sess. run (tf. clip_by_value (v1, 2.5 , 4.5 )))
# 如上,小于 2.5 的数都被换成了 2.5 ,大于 4.5 的数都被换成了 4.5
#tf.clip_by_value() 函数可以保证在进行 log 运算时不会出现 log0 这样的错误或者大于 1 的概率
#输出结果为:[[2.5 2.5 3. ]
[4. 4.5 4.5]]

(2)tf.log()函数
#tf.log() 函数完成张量中所有元素依次求对数的功能
v2=tf. constant ([ 1.0 , 2.0 , 3.0 ])
with tf. Session () as sess:
print (sess. run (tf. log (v2)))
#输出结果为:[0. 0.6931472 1.0986123]

(3)" * "操作
在实现交叉熵的代码中,直接将两个矩阵通过" * "操作相乘,这个操作不是矩阵的乘法,而是 元素之间的直接相乘 矩阵乘法 需要使用 tf.matmul()函数 来完成

(4)cross_entropy=tf.nn.softmax_cross_entropy_with_logits(y,y_data)
# 交叉熵一般会与 softmax 回归一起使用, TensorFlow 对这两个功能进行了统一封装
# 通过以下代码实现使用 softmax 回归之后的交叉熵损失函数
cross_entropy=tf.nn. softmax_cross_entropy_with_logits (y,y_data)
# 其中 y 代表了原始神经网络的输出结果, y_data 是标准答案

(5)tf.nn.sparse_softmax_cross_entropy_with_logits(y,y_data)
# 在只有一个正确答案的分类问题中, TensorFlow 提供了如下函数来进一步加速计算过程
tf.nn. sparse_softmax_cross_entropy_with_logits (y,y_data)



参考资料:《TensorFlow实战 Google深度学习框架》



相关文章
|
4天前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
149 65
|
2月前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
125 3
|
2月前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
152 2
|
3月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
99 8
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
242 5
|
3月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
166 2
|
3月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
492 1
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
161 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
145 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
80 3