RSA算法理论学习解惑――复制粘贴RSA私钥导致tengine出错深入解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: tengine的代码中使用了RSA_check_key函数进行RSA私钥格式正确性检查,有一次加载私钥测试时tengine reload失败。案例的看点是RSA格式私钥文件中的私钥指数d在tengine实际的加解密计算过程中并没有用到,至于为什么请细看下文。

原创文章:来自RSA算法理论学习解惑――复制粘贴RSA私钥导致tengine出错深入解析

tengine的代码中使用了RSA_check_key函数进行RSA私钥格式正确性检查,有一次加载私钥测试时tengine reload失败。案例的看点是RSA格式私钥文件中的私钥指数d在tengine实际的加解密计算过程中并没有用到,至于为什么请细看下文。

问题背景

在一次配置tengine https服务使用的证书和私钥操作时采用了从原文件复制粘贴的方式,当使用tengine启动服务时提示出错:

$tengine -c tengine.conf –t

nginx: [emerg] RSA private key broken: /xxxx/4ed20dc594d0d75926f517d2b29879e2
140319033337512:error:0407B07B:rsa routines:RSA_check_key:d e not congruent to 1:rsa_chk.c:175:
140319033337512:error:0407B07C:rsa routines:RSA_check_key:dmp1 not congruent to d:rsa_chk.c:194:
140319033337512:error:0407B07D:rsa routines:RSA_check_key:dmq1 not congruent to d:rsa_chk.c:212:

关键性提示背后的含义未知。
d e not congruent to 1
dmp1 not congruent to d
dmq1 not congruent to d

原因分析

排查过程中疑问如下:

  1. 从上述提示可以得知rsa_chk.c的行数,从而找到调用来源是tengine中RSA_check_key函数,
    if (RSA_check_key(pkey) != 1) {
        ngx_log_error(NGX_LOG_EMERG, ctx->log, 0,
                      "RSA private key broken: %V", name);
        ERR_print_errors_fp(stderr);
        RSA_free(pkey);
        ret = NGX_ABORT;
        goto out;
    }
  1. 排查此用户的证书与私钥的正确性,首先查看私钥的格式与输出:
  2. rsa -in 111.pem –text 测试正常没有错误
$openssl s_server -accept 9999 -cert cert.crt -key 111.pem 
Using default temp DH parameters
Using default temp ECDH parameters

然后用curl访问https://127.0.0.1:9999端口后, 上述openssl s_server服务打印输出如下:

ACCEPT

GET / HTTP/1.1
User-Agent: curl/7.29.0
Host: localhost:9999
Accept: */*

即ssl握手过程中用到证书与私钥能验证通过!应该能说明证书与私钥确实是配对的。这不可能太奇怪了?!
最后用openssl rsa -in 111.pem –check 才发现有问题。到底是什么原因tengine 判断私钥有问题?本着刨根问底的精神,联系了做openssl的几个同事,暂时也没有人对这块有深入的研究。只能自己动手分析了。

首先查openssl中出错时的代码块

/* d*e = 1  mod lcm(p-1,q-1)? */
173     if (!BN_is_one(i)) {
174         ret = 0;
175         RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_D_E_NOT_CONGRUENT_TO_1);
176     }

使用d和q参数计算 dmq1,然后与私钥文件中解出的dmq1比对查看是否正确.

197         /* dmq1 = d mod (q-1)? */
198         r = BN_sub(i, key->q, BN_value_one());
199         if (!r) {
200             ret = -1;
201             goto err;
202         }
203 
204         r = BN_mod(j, key->d, i, ctx);
205         if (!r) {
206             ret = -1;
207             goto err;
208         }
209 
210         if (BN_cmp(j, key->dmq1) != 0) {
211             ret = 0;
212             RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
213         }

细节分析

看来必须搞清楚这几个参数的含义,但要搞清楚这几个参数的作用需要了解rsa加解密的原理,建议先读“RSA算法原理(二)”
http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

这几个参数在openssl中具体定义是

struct crypto_rsa_key {
    int private_key; /* whether private key is set */
    struct bignum *n; /* modulus (p * q) */
    struct bignum *e; /* public exponent */
    /* The following parameters are available only if private_key is set */
    struct bignum *d; /* private exponent */
    struct bignum *p; /* prime p (factor of n) */
    struct bignum *q; /* prime q (factor of n) */
    struct bignum *dmp1; /* d mod (p - 1); CRT exponent */
    struct bignum *dmq1; /* d mod (q - 1); CRT exponent */
    struct bignum *iqmp; /* 1 / q mod p; CRT coefficient */
};

我以个人理解简单点来解释:公钥可以用n和e代表,私钥可以用n和d代表;且n=p*q算出,e和d需要满足 ed ≡ 1 (mod φ(n)),其中φ(n)代表n的欧拉函数;私钥文件中有了这几个参数完全可以实现用来私钥解密和签名等功能了。以m代表明文,c代表密文,所谓"加密"过程,就是算出下式的c:
me ≡ c (mod n)
所谓解密就是c的d次方除以n的余数为m:
cd ≡ m (mod n)

但是直接用n d大数来直接使用存在效率不高的问题,然后就有数学大牛们引入了新的算法-中国余数定理,用于解决效率的问题(本文简称为RSA-CRT算法)。解密和签名的过程就改为了 

https://w1.fi/cgit/hostap/plain/src/tls/rsa.c
/*
* Decrypt (or sign) using Chinese remainer theorem to speed
* up calculation. This is equivalent to tmp = tmp^d mod n
* (which would require more CPU to calculate directly).
*
* dmp1 = (1/e) mod (p-1)
* dmq1 = (1/e) mod (q-1)
* iqmp = (1/q) mod p, where p > q
* m1 = c^dmp1 mod p
* m2 = c^dmq1 mod q
* h = q^-1 (m1 - m2) mod p
* m = m2 + hq
*/

即RSA-CRT算法只需要5个元素就可以完成模幂运算,不需要用到d.现在也可以清楚了上述crypto_rsa_key结构中最后参数的含义了,即用于RSA-CRT计算用的,且dmp1 dmq1也可以通过d计算得到。

一个RSA私钥文件中的内容解析如下:

$openssl rsa -in serverkey.pem -text
Private-Key: (2048 bit)
modulus:
    00:e3:b7:cb:15:a0:92:a2:0f:10:25:a4:cd:a8:2f:
    24:95:d2:65:e1:3f:cf:4d:87:64:52:f8:d9:f9:dc:
    …………

publicExponent: 65537 (0x10001)
privateExponent:
    6b:39:60:c4:07:3e:e4:56:29:69:40:47:a2:38:c8:
    86:4f:72:af:74:87:5d:5f:32:2b:2b:88:1f:f2:17:
    ……。

prime1:
    00:ff:6a:2f:e3:fb:6c:3c:65:e9:03:0e:0e:8f:4b:
    65:9b:26:8d:22:39:07:26:e5:ca:cc:b2:79:05:4e:
   …………
prime2:
    00:e4:3d:5c:57:35:26:39:18:ab:ba:c4:91:45:cd:
    77:9a:f9:93:75:12:3b:50:d7:53:0b:ee:17:57:70:
    …………
exponent1:
    00:c9:f5:c0:0a:88:6a:ec:53:34:ed:6a:77:0e:cd:
    72:79:3d:01:8a:17:07:d5:b5:0c:27:d1:d3:a9:e3:
    …………
exponent2:
    69:42:23:23:d4:cf:1b:e5:d4:cc:fd:7a:41:c6:d0:
    32:18:87:78:a6:3f:d4:b8:79:04:37:79:6c:49:d0:
    …………
coefficient:
    00:c0:7a:72:d3:fe:81:de:de:3d:21:21:cc:c2:20:
    a0:0e:2e:d2:91:1f:af:b3:89:a2:12:50:88:2c:c6:
    …………
writing RSA key

从上可以看出所有的参数都包含在私钥文件中。

现在可以理解RSA_check_key(pkey) 函数为什么出错了:即拿到私钥文件中dmp1,dmq1,d用公式计算他们的关系发现结果不一致所以报错了。
与原文件正确的私钥经过对比发现有一个字符出错,下图中101行代表原始的pem格式私钥数据C13改为了C12,第32行是经过转换后的数据,
0610_1

查32行得知属于privateExponent部分,即属于私钥元素d

0610_2

到此本该结束了,但还有一个疑问为什么nginx与 openssl s_server都没有出错,追了一下openssl代码
0610_3

rsa->meth->rsa_mod_exp()最后调用 RSA_eay_mod_exp()此函数实现解密没有用到d参数。
nginx与 openssl s_server都没有调用RSA_check_key函数,而tengine做加载私钥用到了RSA_check_key函数。
推断openssl rsa -in 111.pem –check应该也用到了此RSA_check_key函数

小结

主要是需要对RSA私钥文件中各参数的作用需要详细了解,由于需要数论原理很多,理解openssl代码难度还是很高的,搞了几个小时终于搞明白了原理。

目录
相关文章
|
12天前
|
负载均衡 算法 Java
Spring Cloud全解析:负载均衡算法
本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。
|
1月前
|
XML 监控 网络协议
云深处绝影四足机器人协议学习解析
本文详细介绍并解析了云深处绝影X20四足机器人的通信协议,包括TCP服务端端口号、基于Service的请求/响应通信机制、通信帧结构、消息类型、常见的通信示例如获取状态和导航请求,以及运动控制的参数和命令。文中还提出了对协议中某些未明确说明或可能存在的问题的疑惑。
27 0
云深处绝影四足机器人协议学习解析
|
18天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
117 1
|
26天前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
105 1
|
27天前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
56 1
|
1月前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
40 1
|
15天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
15天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
16天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。

热门文章

最新文章

推荐镜像

更多