大咖 | 斯坦福教授骆利群:为何人脑比计算机慢1000万倍,却如此高效?

简介:

AI源于人类大脑的结构,并尝试达到与大脑相当的能力。那么二者的差异究竟在哪里?斯坦福大学神经生物学教授骆利群(Liqun Luo)认为,大脑性能高于AI是因为大脑可以大规模并行处理任务。

一起来看李飞飞教授推荐的这篇文章,深入了解大脑与计算机相似性和差异性。

30b933330a57327a934d20e510a65a4302712c4d

人类大脑的构造十分复杂,它由大约1千亿个神经元组成,并由约100万亿个神经突触连接。人们经常将人脑与计算机——这一有超强计算能力的复杂系统相比较。

大脑和计算机都由大量的基本单元组成。神经元和晶体管,这些基本单元互相连接构成复杂的网络,处理由电信号传导的信息。宏观来看,大脑和计算机的体系结构非常类似,由输入、输出、中央处理和内存等独立的单元组成[1]。

大脑和计算机,哪一种系统解决问题的能力更强呢?鉴于过去几十年计算机技术的迅速发展,你可能会认为计算机更具优势。的确,在一些特定领域,通过编写程序可以使计算机在复杂的竞赛中击败人类大师,远至上世纪90年代国际象棋比赛,近及与AlphaGo的围棋对决,以及参加知识竞赛类电视节目(例如Jeopardy)。

然而,计算机在面对许多现实世界的任务时远不及人类——比如在拥挤的城市街道上识别自行车或特定行人,或伸手端起一杯茶并稳稳地送到嘴边,更不用说那些需要概念化和创造力的工作。

那么,为什么计算机擅长某些任务,而大脑在其他方面表现更优呢?对计算机和大脑进行比较,将为计算机工程师和神经科学家的工作提供指导意义。

在现代计算机时代的开端,一本短小而精深的著作《计算机与人脑》开展了这种比较。该书作者是著名的博学家冯·诺伊曼,他在20世纪40年代首次设计了计算机的体系结构,仍是现代大多数计算机的体系结构的基础[2]。让我们看看下图中的数字。

cf42078d3a18b86e74ec0a4432d4e2aa1af47abc

就基本操作的速度而言,计算机有巨大优势[3]。目前,个人计算机能以每秒100亿次操作的速度执行基本算术运算(如加法运算)。

大脑的速度可以通过神经元相互通信的过程来估算。

例如,神经元激发动作电位——在神经元细胞体附近释放脉冲电流,并沿着轴突传递,轴突连接着下游神经元。在上述过程中,信息按脉冲电流的频率和时间进行编码,且神经元放电的频率最高约为每秒1000次。

又如,神经元主要通过突触释放神经递质来将信息传递给其他神经元,接收到信息的神经元在突触传递的过程中将神经递质结合转换回电信号。最快的突触传递大约需要1毫秒。因此无论在脉冲电流还是突触传递方面,大脑每秒最多可执行大约1000次基本运算,比计算机慢1000万倍。

注:假设算术运算必须将输入转换为输出,所以大脑运算的速度受到神经元信息传递的基本操作的限制,如动作电位和突触传递。当然也有例外情况,例如,具有电突触的无动作电位神经元(神经元之间的连接不存在神经递质)原则上传输信息的时间要快于1毫秒;同一神经元的树突传递信息的速度也比较快。

计算机在基本操作的精确度方面有巨大优势。计算机可以根据位数(二进制数字,即0和1)来表示不同精确度的数字。例如,用32位二进制数表示数字精度可以达到1/(2^32)或1/42亿。实验表明,神经系统中的大部分数量(例如,神经元的发射频率,通常用于表示刺激的强度),由于生物噪声可能会上下浮动几个百分点,精度最高可以达到1/100,比计算机低几百万倍。

注:噪声反映了神经生物学的多个过程,例如神经递质释放具有概率性。例如,在重复试验中,相同的神经元可能会产生不相同的脉冲电流以响应相同的刺激。

专业的网球运动员可以计算出网球以160英里/小时飞行的轨迹

19b096f59f3a9aa8dcb25791d4a76f60e7e93b6e

大脑进行计算时,同时兼顾了速度和准确性。例如,当网球以每小时160英里的速度飞出后,职业网球运动员可以计算网球的运动轨迹,移动到球场上的最佳位置,将手臂放到适当的位置上,并在几百毫秒内挥动球拍,将球击回给对方。

此外,大脑在控制身体并完成击球动作的过程中,其能耗大约只有个人计算机的十分之一。大脑如何实现这一过程?计算机和大脑之间的一个重要区别在于两个系统内处理信息的方式。

计算机主要以串行步骤执行任务,工程师也是通过创建顺序指令流来进行计算机的程序设计。因为串行步骤中的产生的误差会累积和放大,所以对于这种串行操作的级联,对每个步骤的精度要求都特别高。

大脑也使用串行步骤进行信息处理,在将网球击回这一实例中,信息从眼睛流向大脑,然后流向脊髓,以控制腿部,躯干,手臂和手腕的肌肉收缩。

但同时,大脑也利用数量众多的神经元和神经元之间的突触连接来大规模并行处理任务。例如,视网膜中的感光细胞捕捉到移动的网球,并将光信号转换为电信号。这些信号被并行传递到视网膜中的许多不同类型的神经元。

当源自感光细胞的信号传递至视网膜中的2~3个突触连接时,并行神经元网络已经提取了网球的位置,方向和速度的信息,并将这些信息在同一时间传输至大脑。同样,运动皮层(大脑皮层中负责意志运动控制的部分)并行发送命令以控制腿部,躯干,手臂和手腕的肌肉收缩,从而使身体和手臂同时运动,准备好回击飞来的网球。

更多详细内容请戳:

http://nautil.us/issue/5/Fame/the-brain-on-trial

大脑之所以可以执行大规模并行任务处理,是因为每个神经元都从许多神经元接收信息,并将信息发送到其他神经元。哺乳动物输入和输出神经元的平均数量级为1000(相比之下,每个晶体管全部的输入和输出仅靠三个引脚)。单个神经元的信息可以传递到许多平行的下游网络。

同时,处理相同信息的神经元可以将它们的输入信息整合到相同的下游神经元,这种整合特性对于提高信息处理的精度特别有用。例如,由单个神经元表示的信息可能含有噪声(比如说,精确度可以达到1/100),通过求取100个携带相同信息的神经元的输入信息的平均值,共同的下游神经元能以更高的精度提取信息(精度约为1/1000)。

注:假设每个输入的平均方差σ约等于噪声的方差σ(σ反映了分布的宽度,单位与平均值相同)。对于n个独立输入的平均值,平均期望方差为σ=σ/√•n。在本文示例中,σ=0.01,n=100,因此平均方差σ=0.001。

计算机和大脑的基本单元的信号模式既有相同点又有差异性。晶体管采用数字信号,它使用离散值(0和1)来表示信息。神经元轴突中的脉冲电流也是一种数字信号,因为任何时刻,神经元要么在释放脉冲电流,要么处于静默状态。当神经元释放脉冲电流时,其信号的大小和形状大致相同,这些属性有助于脉冲电流的远距离传播。

此外,神经元也释放模拟信号,即使用连续的值来表示信息。一些神经元(像视网膜中的多数神经元)并不释放脉冲电流,它们的输出信号通过分级电信号进行传递(与脉冲电流不同,它的大小可以不断变化),这种信号比脉冲电流能承载更多信息。神经元的接收端(信号通常由树突进行接收)也使用模拟信号来集成数以千计的输入,使树突能够执行复杂的计算。

注:例如,树突可以作为重合检测器对不同上游神经元的同步兴奋输入进行求和。树突也可以从兴奋输入中减去抑制输入。树突中电压门控性离子通道能够使其表现出“非线性”,例如将简单信号中的电信号进行放大。

你的大脑比计算机慢1000万倍

6c6dda84ded898dd41cbe4028f9ebd98bea3bd44

大脑的另一个显著特点是神经元之间的连接强度可以根据活动和经验进行修改,这一点可以在回击网球的例子中得以体现,神经科学家普遍认为,这种特点也是学习和记忆的基础。重复训练使得神经元网络可以更好地执行任务,从而大大提高速度和精度。

在过去的几十年里,工程师们通过研究大脑获得的灵感来改进计算机的设计。并行处理策略和根据实际情况来修改连接强度,已经在现代计算机设计中得以体现。例如,增加并行性,在计算机中使用多核处理器,已经是现代计算机设计的趋势。又如,机器学习和人工智能领域的“深度学习”近年来取得了巨大的成功,并且促进了计算机和移动设备中的目标和语音识别方面的快速发展,这都得益于对哺乳动物视觉系统的研究[4]。

与哺乳动物视觉系统一样,深度学习采用多层结构来表示越来越抽象的特征(例如视觉对象或语音),并且通过机器学习来调整不同层之间的连接权重,不再依赖工程师的设计。这些最新进展已经扩展到了计算机执行任务的指令表中。当然,大脑依然比先进的计算机具有更高的灵活性,泛化和学习能力。

借助于计算机,神经科学家将逐步发掘大脑的工作机理,也有助于激发工程师们的灵感,进一步改善计算机的体系结构和性能。无论谁在特定任务中胜出,跨学科的相互影响将推动神经科学和计算机工程的发展。


原文发布时间为:2018-05-30

本文作者:骆利群

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
29天前
|
存储 弹性计算 固态存储
阿里云服务器按量付费与包年包月收费标准,云服务器最新活动价格参考
阿里云的价格一直是用户最为关注的,阿里云这两年也多次做了降价策略,阿里云根据用户的实际需求,针对云服务器收费模式推出按量付费与包年包月两种收费模式,云服务器价格表2025最新版,轻量应用服务器38元一年起,ECS云服务器2核2G3M带宽99元1年、2核4G5M带宽199元一年,新品通用算力型u2i实例4核4G1120.44元/1年起、4核8G1170.26元/1年起,九代云服务器计算型c9i实例8核16G6037.01元/1年起、通用型g9i实例8核32G7551.94元/1年起、内存型r9i实例8核64G9937.12元/1年起。叠加阿里云推出的各种优惠券还可享受满减优惠。
|
Windows
电脑win系统开机自动运行批处理、脚本等的方法/开机自动执行bat脚本
电脑win系统开机自动运行批处理、脚本等的方法/开机自动执行bat脚本
1380 0
|
7月前
|
人工智能 前端开发 JavaScript
从代码中诞生的浪漫:一个程序员的表白艺术
本文介绍了一款用代码表达爱意的表白网页项目,通过JavaScript、HTML5和CSS3技术实现。它不仅是一个简单的网页,更是一段爱情诗、情感载体和个人魅力展示。借助CodeBuddy智能助手,项目实现了动态页面效果、多媒体展示和互动游戏等功能,支持多设备兼容与性能优化。开源分享旨在激发创意,未来还将拓展多语言支持和社区模块,证明代码也能编织浪漫。
465 19
|
存储 Java 测试技术
ClickHouse Keeper: 一个用 C++ 编写的 ZooKeeper 替代品
ClickHouse Keeper: 一个用 C++ 编写的 ZooKeeper 替代品介绍
71458 34
ClickHouse Keeper: 一个用 C++ 编写的 ZooKeeper 替代品
|
4月前
|
人工智能 自然语言处理 JavaScript
17种RAG实现方法大揭秘
RAG(检索增强生成)通过结合外部知识库与LLM生成能力,有效解决大模型知识滞后与幻觉问题。本文详解三类策略、17种实现方案,涵盖文档分块、检索排序与反馈机制,并提供工程选型指南,助力构建高效智能系统。
1079 0
|
9月前
|
机器学习/深度学习 分布式计算 Kubernetes
30分钟拉起Ray集群并部署Stable Diffusion模型服务
Ray 是一个支持模型训练、测试以及部署的开源平台,由加州大学伯克利分校的 RISELab 开发。它旨在简化大规模机器学习、强化学习和分布式计算任务的开发与部署。阿里云计算巢实现了Ray Cluster的一键部署,帮助用户能够便捷地使用分布式集群训练和测试自己的模型。
|
机器学习/深度学习 自然语言处理 搜索推荐
智能语音识别技术的现状与未来发展趋势####
本文深入探讨了智能语音识别技术的发展历程、当前主要技术特点、应用领域及面临的挑战,并展望了其未来的发展趋势。通过对比分析传统与现代语音识别技术的差异,揭示了技术创新如何推动该领域不断前进。文章还强调了跨学科合作对于解决现有难题的重要性,为读者提供了一个全面而深入的视角来理解这一快速发展的技术。 ####
|
11月前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
1893 1
|
缓存 搜索推荐 前端开发
百度 SEO:不是玄学,是科学与艺术的 “恋爱”
本文介绍了百度SEO的基本原则和方法,涵盖关键词优化、内容优化、网站结构优化、链接建设和用户体验优化五个方面。通过科学的方法和艺术的技巧,帮助网站提升在百度搜索引擎中的排名,吸引更多流量。
561 30
|
11月前
|
存储 人工智能 数据可视化
阿里云向量引擎快速搭建企业级RAG最佳实践
本文介绍了基于阿里云搭建RAG(检索增强生成)应用的技术分享。首先回顾了RAG技术背景及其面临的挑战,如大模型幻觉、知识局限和数据安全问题。接着详细讲解了阿里云提供的RAG技术架构,涵盖数据处理、模型服务和高性能检索引擎等多方面能力。最后,通过自研引擎与开源组件的结合,展示了如何快速构建RAG应用,并提供端到端的最佳实践方案,确保系统在企业级应用中的高效性和成本优化。