MySQL无损复制

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

MySQL5.7新特性:lossless replication 无损复制

https://dev.mysql.com/doc/refman/5.7/en/replication-semisync.html

MySQL的三种复制方式

  1. asynchronous 异步复制
  2. fully synchronous 全同步复制
  3. Semisynchronous 半同步复制

asynchronous replication

原理:在异步复制中,master写数据到binlog且sync,slave request binlog后写入relay-log并flush disk
优点:复制的性能最好
缺点:master挂掉后,slave可能会丢失事务
代表:MySQL原生的复制

async

fully synchronous replication

原理:在全同步复制中,master写数据到binlog且sync,所有slave request binlog后写入relay-log并flush disk,并且回放完日志且commit
优点:数据不会丢失
缺点:会阻塞master session,性能太差,非常依赖网络
代表:MySQL-Cluster

sync

semisynchronous replication

  • 普通的半同步复制

原理: 在半同步复制中,master写数据到binlog且sync,且commit,然后一直等待ACK。当至少一个slave request bilog后写入到relay-log并flush disk,就返回ack(不需要回放完日志)
优点:会有数据丢失风险(低)
缺点:会阻塞master session,性能差,非常依赖网络,
代表:after commit, 原生的半同步
重点:由于master是在三段提交的最后commit阶段完成后才等待,所以master的其他session是可以看到这个提交事务的,所以这时候master上的数据和slave不一致,master crash后,slave数据丢失

semi

  • 增强版的半同步复制(lossless replication)

原理: 在半同步复制中,master写数据到binlog且sync,然后一直等待ACK. 当至少一个slave request bilog后写入到relay-log并flush disk,就返回ack(不需要回放完日志)
优点:数据零丢失(前提是让其一直是lossless replication),性能好
缺点:会阻塞master session,非常依赖网络
代表:after sync, 原生的半同步
重点:由于master是在三段提交的第二阶段sync binlog完成后才等待, 所以master的其他session是看不见这个提交事务的,所以这时候master上的数据和slave一致,master crash后,slave没有丢失数据

lossless

重要参数

参数 comment 默认值 推荐值 是否动态
rpl_semi_sync_master_wait_for_slave_count 至少有N个slave接收到日志 1 1 dynamic
rpl_semi_sync_master_wait_point 等待的point AFTER_SYNC AFTER_SYNC dynamic
rpl_semi_sync_master_timeout 切换复制的timeout 10000(10s) 1000(1s) dynamic
rpl_semi_sync_master_enabled 是否开启半同步 OFF ON dynamic
rpl_semi_sync_slave_enabled 是否开启半同步 OFF ON dynamic

如何开启lossless replication

########semi sync replication settings########
plugin_dir=/usr/local/mysql/lib/plugin
plugin_load = "rpl_semi_sync_master=semisync_master.so;rpl_semi_sync_slave=semisync_slave.so"
loose_rpl_semi_sync_master_enabled = 1
loose_rpl_semi_sync_slave_enabled = 1
loose_rpl_semi_sync_master_timeout = 1000

实践是检验真理的唯一标准

如何检验上述after_sync,after_commit
如何检验上述原理的正确性

InnoDB commit : 三阶段提交过程

A阶段. wite prepare log -- 写入Xid
B阶段. write binlog
C阶段. write commit log

测试点

master上当一个事务Waiting for semi-sync ACK from slave的时候,后来的事务是在A,B,C哪个阶段卡住呢?

0,RC模式

1. semi-sync C阶段等待

假设设置time-out=100000s,当事务一提交了一个大事务,在write commit log(C阶段)时候等待,
那么第二个事务在敲commit命令的时候,是卡在哪个阶段呢?是卡在 wite prepare log(A阶段)?还是write binlog(B阶段)?还是write commit log(C阶段)

测试:semi-sync vs  loss-less semi-sync

【semi-sync】 C阶段等待
0, 开启事务1,然后在slave上执行stop slave,制造timeout的情况,让其阻塞。(Waiting for semi-sync ACK from slave)
1,在开启一个事务2,事务2插入一条特殊记录(XXXXX)。  (Waiting for semi-sync ACK from slave)
2,在开启一个事务3。
2.1,测试案例:这个时候,kill -9 mysqld,造成人为的mysql crash
3,假设卡在A阶段,那么事务3,肯定是看不到事务1,2写入的记录(XXXXX),且重启mysql后,事务2不会提交。
4,假设卡在C阶段,那么事务3,肯定是可以看见事务1,2写入的记录(XXXXX)。

经过测试:
1,是卡在C阶段,也就是说事务3是可以看见事务1,事务2的。
2,MySQL crash重启后,事务1,事务2的dml都已经提交成功,说明不是卡在A阶段

【loss-less semi-sync】B阶段等待

0, 开启事务1,然后在slave上执行stop slave,制造timeout的情况,让其阻塞。(Waiting for semi-sync ACK from slave)
1,在开启一个事务2,事务2插入一条特殊记录(XXXXX)。(Waiting for semi-sync ACK from slave)
2,在开启一个事务3
3,假设卡在A阶段,那么事务3,肯定是看不到事务1,2写入的记录(XXXXX),且重启mysql后,事务2不会提交。。
4,假设卡在B阶段,那么事务3,肯定是可以看见事务1,2写入的记录(XXXXX),且重启mysql后,事务1,2都会提交。。
5, 假设卡在C阶段,那么事务3,肯定是可以看见事务3写入的记录(XXXXX)。

经过测试:
1,是卡在B阶段,也就是说事务3,既看不见事务1的提交内容,也看不见事务2的提交内容,且重启mysql后,事务1,2都已经提交。。
2,MySQL crash重启后,事务1,事务2的dml都已经提交成功,说明不是卡在A阶段。

性能

semi-sync vs lossless semi-sync 的性能对比

根据以上的测试,可以得知,lossless只卡在B阶段,普通的semi-sync是卡在C阶段。
lossless的性能远远好于普通的semi-sync,即(after_sync 优于 after_commit)
因为lossless 卡在B阶段的时候可以堆积事务,可以在C阶段进行group commit。
普通的semi-sync,卡在C阶段,事务都已经commit了,并没有堆积的过程。

CAP理论

一致性【C】
可用性【A】
分区容忍性【P】
理论:CAP 三者不可兼得,必须要牺牲一个

分区,是一定存在的,不是你想不要就不要的。所以,这里只剩下两种组合

  • CP 牺牲可用性

这种做法,就是保留强一致性,牺牲可用性
案例:可以将rpl_semi_sync_master_timeout设置成一个无限大的值,比如:100天,那么master和slave就强一致了,但是可用性就大打折扣

  • AP 牺牲一致性

这种做法,就是保留高可用性,牺牲一致性
案例:比如原生的异步复制就是这样咯。可以快速做到切换,但是一致性就没有保障

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7月前
|
SQL 关系型数据库 MySQL
面试官:说一下MySQL主从复制的原理?
面试官:说一下MySQL主从复制的原理?
182 0
面试官:说一下MySQL主从复制的原理?
|
SQL 存储 关系型数据库
MySQL主从复制之原理&一主一从部署流程—2023.04
MySQL主从复制之原理&一主一从部署流程—2023.04
549 0
|
7月前
|
SQL 关系型数据库 MySQL
MySQL中主从复制的原理和配置命令
要原因包括提高性能、实现高可用性、数据备份和灾难恢复。了解两大线程( I/O 和 SQL)I/O线程:目的:I/O线程主要负责与MySQL服务器之外的其他MySQL服务器进行通信,以便复制(replication)数据。 功能: 当一个MySQL服务器作为主服务器(master)时,I/O线程会将变更日志(binary log)中的事件传输给从服务器(slave)。从服务器上的I/O线程负责接收主服务器的二进制日志,并将这些事件写入本地的中继日志(relay log)。 配置: 在MySQL配置文件中,你可以通过配置参数如和来启用二进制日志和指定服务器ID。log-bin server
143 1
MySQL中主从复制的原理和配置命令
|
2月前
|
存储 关系型数据库 MySQL
MySQL主从复制原理和使用
本文介绍了MySQL主从复制的基本概念、原理及其实现方法,详细讲解了一主两从的架构设计,以及三种常见的复制模式(全同步、异步、半同步)的特点与适用场景。此外,文章还提供了Spring Boot环境下配置主从复制的具体代码示例,包括数据源配置、上下文切换、路由实现及切面编程等内容,帮助读者理解如何在实际项目中实现数据库的读写分离。
114 1
MySQL主从复制原理和使用
|
2月前
|
SQL 关系型数据库 MySQL
Mysql中搭建主从复制原理和配置
主从复制在数据库管理中广泛应用,主要优点包括提高性能、实现高可用性、数据备份及灾难恢复。通过读写分离、从服务器接管、实时备份和地理分布等机制,有效增强系统的稳定性和数据安全性。主从复制涉及I/O线程和SQL线程,前者负责日志传输,后者负责日志应用,确保数据同步。配置过程中需开启二进制日志、设置唯一服务器ID,并创建复制用户,通过CHANGE MASTER TO命令配置从服务器连接主服务器,实现数据同步。实验部分展示了如何在两台CentOS 7服务器上配置MySQL 5.7主从复制,包括关闭防火墙、配置静态IP、设置域名解析、配置主从服务器、启动复制及验证同步效果。
Mysql中搭建主从复制原理和配置
|
4月前
|
SQL 关系型数据库 MySQL
说一下MySQL主从复制的原理?
【8月更文挑战第24天】说一下MySQL主从复制的原理?
65 0
|
4月前
|
SQL canal 关系型数据库
(二十四)全解MySQL之主从篇:死磕主从复制中数据同步原理与优化
兜兜转转,经过《全解MySQL专栏》前面二十多篇的内容讲解后,基本对MySQL单机模式下的各方面进阶知识做了详细阐述,同时在前面的《分库分表概念篇》、《分库分表隐患篇》两章中也首次提到了数据库的一些高可用方案,但前两章大多属于方法论,并未涵盖真正的实操过程。接下来的内容,会以目前这章作为分割点,开启MySQL高可用方案的落地实践分享的新章程!
2155 1
|
7月前
|
关系型数据库 MySQL Linux
【mysql】MySql主从复制,从原理到实践!
【mysql】MySql主从复制,从原理到实践!
252 0
|
7月前
|
SQL 容灾 关系型数据库
MySQL 主从复制原理
MySQL 主从复制原理
80 1
MySQL 主从复制原理
|
SQL 关系型数据库 MySQL
MySql主从复制原理及其搭建
MySql主从复制原理及其搭建