python的webrtc库实现语音端点检测

简介: python的webrtc库实现语音端点检测 文章源码在 https://github.com/wangshub/python-vad 引言 语音端点检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率.

python的webrtc库实现语音端点检测

文章源码在 https://github.com/wangshub/python-vad

引言

语音端点检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率.端点检测属于语音处理系统的前端操作,在语音检测领域意义重大.
但是目前的语音端点检测,尤其是检测 人声 开始和结束的端点始终是属于技术难点,各家公司始终处于 能判断,但是不敢保证 判别准确性 的阶段.
Screenshot from 2017-05-25 22-42-50.png
现在基于云端语义库的聊天机器人层出不穷,其中最著名的当属amazon的 Alexa/Echo 智能音箱.
timg.jpg

国内如雨后春笋般出现了各种搭载语音聊天的智能音箱(如前几天在知乎上广告的若琪机器人)和各类智能机器人产品.国内语音服务提供商主要面对中文语音服务,由于语音不像图像有分辨率等等较为客观的指标,很多时候凭主观判断,所以较难判断各家语音识别和合成技术的好坏.但是我个人认为,国内的中文语音服务和国外的英文语音服务,在某些方面已经有超越的趋势.
timg (1).jpg

通常搭建机器人聊天系统主要包括以下三个方面:
* 语音转文字(ASR/STT)
* 语义内容(NLU/NLP)
* 文字转语音(TTS)

语音转文字(ASR/STT)

在将语音传给云端API之前,是本地前端的语音采集,这部分主要包括如下几个方面:
* 麦克风降噪
* 声源定位
* 回声消除
* 唤醒词
* 语音端点检测
* 音频格式压缩

python 端点检测

由于实际应用中,单纯依靠能量检测特征检测等方法很难判断人声说话的起始点,所以市面上大多数的语音产品都是使用唤醒词判断语音起始.另外加上声音回路,还可以做语音打断.这样的交互方式可能有些傻,每次必须喊一下 唤醒词 才能继续聊天.这种方式聊多了,个人感觉会嘴巴疼:-O .现在github上有snowboy唤醒词的开源库,大家可以登录snowboy官网训练自己的唤醒词模型.
* Kitt-AI : Snowboy
* Sensory : Sensory

考虑到用唤醒词嘴巴会累,所以大致调研了一下,python拥有丰富的库,直接import就能食用.这种方式容易受强噪声干扰,适合一个人在家玩玩.
* pyaudio: pip install pyaudio 可以从设备节点读取原始音频流数据,音频编码是PCM格式;
* webrtcvad: pip install webrtcvad 检测判断一组语音数据是否为空语音;
当检测到持续时间长度 T1 vad检测都有语音活动,可以判定为语音起始;
当检测到持续时间长度 T2 vad检测都没有有语音活动,可以判定为语音结束;

完整程序代码可以从我的https://github.com/wangshub/python-vad下载
程序很简单,相信看一会儿就明白了

'''
Requirements:
+ pyaudio - `pip install pyaudio`
+ py-webrtcvad - `pip install webrtcvad`
'''
import webrtcvad
import collections
import sys
import signal
import pyaudio

from array import array
from struct import pack
import wave
import time

FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
CHUNK_DURATION_MS = 30       # supports 10, 20 and 30 (ms)
PADDING_DURATION_MS = 1500   # 1 sec jugement
CHUNK_SIZE = int(RATE * CHUNK_DURATION_MS / 1000)  # chunk to read
CHUNK_BYTES = CHUNK_SIZE * 2  # 16bit = 2 bytes, PCM
NUM_PADDING_CHUNKS = int(PADDING_DURATION_MS / CHUNK_DURATION_MS)
# NUM_WINDOW_CHUNKS = int(240 / CHUNK_DURATION_MS)
NUM_WINDOW_CHUNKS = int(400 / CHUNK_DURATION_MS)  # 400 ms/ 30ms  ge
NUM_WINDOW_CHUNKS_END = NUM_WINDOW_CHUNKS * 2

START_OFFSET = int(NUM_WINDOW_CHUNKS * CHUNK_DURATION_MS * 0.5 * RATE)

vad = webrtcvad.Vad(1)

pa = pyaudio.PyAudio()
stream = pa.open(format=FORMAT,
                 channels=CHANNELS,
                 rate=RATE,
                 input=True,
                 start=False,
                 # input_device_index=2,
                 frames_per_buffer=CHUNK_SIZE)


got_a_sentence = False
leave = False


def handle_int(sig, chunk):
    global leave, got_a_sentence
    leave = True
    got_a_sentence = True


def record_to_file(path, data, sample_width):
    "Records from the microphone and outputs the resulting data to 'path'"
    # sample_width, data = record()
    data = pack('<' + ('h' * len(data)), *data)
    wf = wave.open(path, 'wb')
    wf.setnchannels(1)
    wf.setsampwidth(sample_width)
    wf.setframerate(RATE)
    wf.writeframes(data)
    wf.close()


def normalize(snd_data):
    "Average the volume out"
    MAXIMUM = 32767  # 16384
    times = float(MAXIMUM) / max(abs(i) for i in snd_data)
    r = array('h')
    for i in snd_data:
        r.append(int(i * times))
    return r

signal.signal(signal.SIGINT, handle_int)

while not leave:
    ring_buffer = collections.deque(maxlen=NUM_PADDING_CHUNKS)
    triggered = False
    voiced_frames = []
    ring_buffer_flags = [0] * NUM_WINDOW_CHUNKS
    ring_buffer_index = 0

    ring_buffer_flags_end = [0] * NUM_WINDOW_CHUNKS_END
    ring_buffer_index_end = 0
    buffer_in = ''
    # WangS
    raw_data = array('h')
    index = 0
    start_point = 0
    StartTime = time.time()
    print("* recording: ")
    stream.start_stream()

    while not got_a_sentence and not leave:
        chunk = stream.read(CHUNK_SIZE)
        # add WangS
        raw_data.extend(array('h', chunk))
        index += CHUNK_SIZE
        TimeUse = time.time() - StartTime

        active = vad.is_speech(chunk, RATE)

        sys.stdout.write('1' if active else '_')
        ring_buffer_flags[ring_buffer_index] = 1 if active else 0
        ring_buffer_index += 1
        ring_buffer_index %= NUM_WINDOW_CHUNKS

        ring_buffer_flags_end[ring_buffer_index_end] = 1 if active else 0
        ring_buffer_index_end += 1
        ring_buffer_index_end %= NUM_WINDOW_CHUNKS_END

        # start point detection
        if not triggered:
            ring_buffer.append(chunk)
            num_voiced = sum(ring_buffer_flags)
            if num_voiced > 0.8 * NUM_WINDOW_CHUNKS:
                sys.stdout.write(' Open ')
                triggered = True
                start_point = index - CHUNK_SIZE * 20  # start point
                # voiced_frames.extend(ring_buffer)
                ring_buffer.clear()
        # end point detection
        else:
            # voiced_frames.append(chunk)
            ring_buffer.append(chunk)
            num_unvoiced = NUM_WINDOW_CHUNKS_END - sum(ring_buffer_flags_end)
            if num_unvoiced > 0.90 * NUM_WINDOW_CHUNKS_END or TimeUse > 10:
                sys.stdout.write(' Close ')
                triggered = False
                got_a_sentence = True

        sys.stdout.flush()

    sys.stdout.write('\n')
    # data = b''.join(voiced_frames)

    stream.stop_stream()
    print("* done recording")
    got_a_sentence = False

    # write to file
    raw_data.reverse()
    for index in range(start_point):
        raw_data.pop()
    raw_data.reverse()
    raw_data = normalize(raw_data)
    record_to_file("recording.wav", raw_data, 2)
    leave = True

stream.close()
原文地址http://www.bieryun.com/2966.html

程序运行方式sudo python vad.py

相关文章
|
3月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
511 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
3月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
254 0
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
261 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
2月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
330 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
4月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
276 18
|
4月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
411 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
4月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
191 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
311 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
340 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
271 103

推荐镜像

更多