五步帮你实现用户画像的数据加工

简介: 企业最终的数据往往都隐藏在日志背后,如果从日志背后挖掘出有价值的信息,勾画出平台或网站的用户画像对精准化运营有着重要的帮助。阿里云技术专家祎休带来阿里在处理日志、构建数仓上的最佳实践分享。主要从数仓开发开始谈起,重点讲解了数据加工用户画像的五大步骤,最后进行了演示解析。

企业最终的数据往往都隐藏在日志背后,如果从日志背后挖掘出有价值的信息,勾画出平台或网站的用户画像对精准化运营有着重要的帮助。阿里云技术专家祎休带来阿里在处理日志、构建数仓上的最佳实践分享。主要从数仓开发开始谈起,重点讲解了数据加工用户画像的五大步骤,最后进行了演示解析。
直播视频回顾请点击

以下是精彩视频内容整理:

数据融合加工-数仓开发

大数据仓库特殊引擎提供我们一站式的PB级大数据仓库解决方案,那么,我们如何基于MaxCompute去构建仓库,如何去帮数据进行清洗加工,然后去挖掘出有价值的信息?MaxCompute2.0推出了一些新功能,比如说非结构化数据的处理, MaxCompute支持非结构化数据存储在OSS上,以前的方式是通过数据集成工具或者自己去写一些任务,将这些数据周期性或者一次性同步到MaxCompute上来,既有开发成本,又有运维成本,在2.0里面我们支持直接创建外部表的方式连接数据源,直接对数据进行处理。

1


在数仓上的开发规范如图,从日志数据、用户基本信息数据等里面去挖掘出价值信息,然后涉及到数据开发人员做一些ETL的设计,包括我们的一些开发编码、设置,将任务提交到线上,在线上我们会遇到过去的一些数据运维工作,这些运维工作是不是可以在Dataworks里面去完成?下面我们一起来了解操作细节。

1. 需求分析

2


通常情况下会以一个这样的链路图去做用户画像,可以看到,用户画像通常情况下会包含两个部分,动态数据和静态数据。动态数据包括行为数据、页面行为、交易数据,比如说你的用户点击浏览数据等都可以放在动态的数据里面去,比如说在我们的网站整个的访问深度,是不是在页面上形成了时长有多少,在某一整个链路上注册开通再到数据开发的跳失率是多少等等;静态数据更多的是关于人的一些属性,比如说姓名、星座、年龄、长居地以及通常使用什么样的设备去访问我们的网站等等,所以有一些终端设备的偏好信息。

数仓创建

3


做数仓要进行数仓分层,底层是ODS层,通常情况下将原始的数据先采集到MaxCompute上来,对一些非结构化数据进行一定的结构化,包括一些数据的规范化, DWD层有我们的一些明细数据,我们要在这些数据之间能够产生一些价值,做一些数据清洁工作、数据交换工作,将数据进行打包,再向上我们要根据数据去做一些公共指标加工和应用指标加工,比如PVUV的访问、设备的访问等等。

2. 原始日志分析

4


5


原始数据可以通过这些字段里面去获得什么样的信息?一个日志信息里面,包含用户来访问网站或者平台IP地址、用户登录名,然后通过一些字段可以分析设备信息,比如说我们可以从用户真实的数据里面看到IP地址,包括什么时间去访问,访问了我们哪一个页面,使用了什么样的浏览器,浏览器内容是什么,有的直接用手机端等等,我们可以通过这些信息去挖掘出更多的信息,比如说可以通过IP地址知道用户长居住在哪个城市来访问我们网站,通过user_agent字段可以获取设备信息,因为我们去访问终端一些版本,设置可以通过这些数据进行一个结构化,然后把数据抽象处理。

6


用户信息表就是一张结构化的二维表,通常会包含一些用户的信息、性别、年龄、星座等等。

7


通过已有的这些数据,再去做用户画像时候可以看到,深色是已有数据,可以去刻画出用户在我们网站的浏览性,比如说整个网站的PVUV等等,通常访问哪个页面更高,然后在什么时候去访问。

3. 数据开发

8


接下来进入数据开发阶段,数据开发阶段要去实现如图逻辑,左边ods_log_info_d这张表存着我们的日志信息,我们要去公开一个结构,将用户IP地址解析出来一个一个地域信息。右边ods_log_info_d用户的基本信息已经是结构化了,这两个数据通过UID进行关联,JOIN成一张大表,原封未动的将我们的数据采集到MaxCompute上来,然后在DW层里面做更多的关联,关联出一张用户去访问我们广泛基本信息的宽表,然后基于这个宽表之上,我们有一个IP地址,要知道这个用户PV的具体数据,比如求平均值或者求在整个网站访问的最佳深度等。

9


在创建表的时候怎么更全面?我们发现,所有工作流任务、节点任务,包括我们的表,命名其实都有一个规则,如果你的数据量很大,通常情况下包含数据库的仓库分层、业务域、数据域和数据分析时间,这张表属于DW层,这张表刻划了一个用户的基本信息,这就表示这张表的数据是一天更新一次的,通过这样一张表可以明确知道刻划什么样的业务价值,让依赖于这张表的下游同学可以快速认识这张表的数据分析时间,描述什么样的信息。

10


另外,我们的IP去转地域信息,在公共云版本上面函数是没有对外开放的,所以需要去解决自定义的函数,但有一些函数不能满足配置,比如说大写转成小写,将IP转成region如何去做,通常情况下我们会去写一些Java去做这样的事情。将这些函数、资源包注册到MaxCompute上来,通过堆头注册上来,然后去对函数进行解析。

4. 最佳实践

11


我们强调每一个节点里面最多输出一张表,当你有多张表的时候,比如说任务失败了,可能是因为其中某一条处理的逻辑失败了,当你去重跑的时候,可能整个任务都要重新去跑,另外,你的输出表表格一定要跟你的节点名称一样,这样可以快速从你的输出运维上,快速找到这张表的数据在哪个节点上没有产生,是因为哪一些任务失败了。
大家都知道,大数据里面可能会有预测的insert overwrite,比如说测试数据任务时候会加数据库,通常情况下会造成数据重复和数据产生,如果你去使用灰色的overwrite,或者是每一次的任务重跑或失败之后,你要去手工再把这个任务调动起来,会根据你的分区表数据批量进行。这样最多的好处是每一张表数据的产生,比如说代码加一些注释,比如说整个SQL逻辑是处于什么样的,一定要在前面去进行相关的注释。
在操作过程中,大家尽量去减少Select*操作,因为你的计算成本比较高,在2.0里面我们已经打开了全表推出,用户去进行一个选表,上个月去拜访什么客户,通常情况下每个月在平台上消费3千多,在所有查看数据的时候,没有加分区的全表扫的计算成本很高,所以建议大家在去使用的过程中多加一个分区排检,可以减少我们的计算成本。

12


在公共云上,我们有一些公共云的服务,还有一些私有化服务,比如说安全行业、金融行业,通常都需要将大数据部署稳定,我们的项目创建的一个或者两个如何区分?通常情况下会有开发和生成,开发就交给数据开发团队去把数据任务开发好、调试好,然后发布到生产环境上去,生产环境上更新一些配置的调度信息,比如说按天、周、月等等去运维,对他的数据开发流程要求特别严,通常情况下有更多的事情发生,包的开发、测试,还有一些预发环境和生产,整个代码环境都会去详细的进行运维,你去创建的时候,可以在项目配置中去调试,比如说在开发项目里面,通常情况是不打开调度参数,就是说你创建的客户提交之后,不会每天自动去调度,当你把任务发布到生产的项目上面,根据你的配置更新每天去同步。

13


调度参数方面,比如说将数据如何去写到一个最新的分区,比如说分公司24号对应的分区里面,25是新的一些事情,如何去起到新对应25号的分区里面去,我们提供这样的参数,当你配置这样的系统参数时候,每次在我们调度系统的时候会自动进行切换,一些日期不需要你每次手动去创建分区。

5. 实验操作

14


通常情况下,我们先去创建所谓的三张表,每张表简单去适应如何分层,比方说第一层ODS层,第二层是DW层,从结构上面也可以看出来,每一个节点都是相当规则,当这张数据要同步到MaxCompute上,肯定是要建一个目标表,同样有一张表可以存储这张数据。然后创建工作流节点,接着创建自定义UDF,最后配置SQL节点和测试运行。

本文由云栖志愿小组毛鹤整理,编辑百见

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
5月前
|
存储 缓存 固态存储
分区会不会影响固态硬盘的性能呢
固态硬盘(SSD)分区是否影响性能?本文详解分区对SSD的影响,解答“该不该分”“如何分更合理”等问题。分区本质上是逻辑划分,不影响SSD核心性能。只要合理操作,分区不会拖慢速度。建议根据使用场景选择分区策略,如系统与数据分离、游戏分区等,以提升管理效率和使用体验。
|
区块链 安全 存储
带你读《区块链工程实践 行业解决方案与关键技术》之二:电力市场交易结算智能合约
本书是一部能全方位指导区块链项目落地的实操性著作。通过5个经典的行业案例,从总体设计、业务设计、功能接口设计、架构设计这4个维度详细讲解了如何构建一个完整的区块链行业解决方案,同时讲解了实现每个解决方案需要的关键技术和方法。
|
8月前
|
网络协议 安全 应用服务中间件
云服务器怎么开启被关闭的端口?手把手教你开启端口
在使用云服务器时,若发现某些服务无法访问,可能是端口被关闭。本文介绍了端口关闭的原因、检查方法及开启步骤。原因包括初始设置限制、防火墙规则和外部网络策略;可通过netstat或ss命令检查端口状态,用ufw、iptables或firewalld调整防火墙规则。最后提供了解决常见问题的建议,确保端口正常开放并可供外网访问。
1547 9
|
存储 数据处理 开发工具
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK实现相机图像转换由Mono10转换为Mono8(C#)
Baumer工业相机堡盟工业相机如何通过NEOAPI SDK实现相机图像转换由Mono10转换为Mono8(C#)
223 0
|
8月前
|
编解码 算法 前端开发
《多端统一的终极答案:X5内核增强版的渲染优化全解析》
跨端应用需求激增,腾讯X5内核增强版通过多线程渲染、智能策略与资源优化,解决跨平台兼容和性能问题。它支持硬件加速图形处理,确保高清流畅体验;建立设备数据库,适配多系统版本,推动行业标准化。X5内核为用户提供一致体验,助力开发者高效构建跨端应用,引领行业技术革新。
242 11
|
敏捷开发 数据可视化 Java
低代码和无代码:简单概念之下的深刻内涵
从2020年到2024年,低代码和无代码开发平台凭借其独特优势,逐渐成为企业敏捷开发和快速响应市场变化的利器。本文深入探讨了这两种平台的概念、用户需求及开发内涵,揭示了它们在现代软件开发中的重要价值和应用场景,帮助读者更好地理解低代码和无代码平台的核心特点及其对企业数字化转型的推动作用。
|
数据可视化 JavaScript API
HarmonyOS NEXT原生重榜发布-安利一款鸿蒙可视化代码生成器
鸿蒙低代码可视化开发平台是基于华为鸿蒙操作系统构建的创新开发环境,旨在通过简化开发流程、降低技术门槛,加速应用从设计到上线的全过程。它融合了低代码开发的核心理念与鸿蒙系统的技术优势,为开发者提供了一条高效、便捷的应用开发之路。
370 2
信不信?工作这么多年,还有很多网工不知道光模块光衰的正常范围?
信不信?工作这么多年,还有很多网工不知道光模块光衰的正常范围?
1578 2
|
数据采集 测试技术 数据处理
数字藏品系统开发需求分析(源码部署)
数字藏品系统是一种基于数字技术的文化遗产保护和传承方式,它可以将文物、艺术品、历史文献等珍贵文化资源数字化,实现数字化保存、展示、研究和传播。数字藏品系统的开发需要以下步骤:
【5分钟+】计算机系统结构:CPU性能公式
【5分钟+】计算机系统结构:CPU性能公式
1598 0
【5分钟+】计算机系统结构:CPU性能公式