PostgreSQL Frontend/Backend protocol (通信协议)

简介:

标签

PostgreSQL , protocol , proxy , 通信协议


背景

理解PostgreSQL的通信协议可以更好的开发类似SQL代理,SQL中间件,SQL防火墙,连接池等软件。

学习资料与软件

《PostgreSQL 读写分离代理 - Crunchy Proxy(base on golang)》

Postgres on the wire - A look at the PostgreSQL wire protocol

PG通信协议介绍

https://www.postgresql.org/docs/current/static/protocol.html

https://www.postgresql.org/docs/current/static/protocol-message-formats.html

This section describes the detailed format of each message. Each is marked to indicate that it can be sent by a frontend (F), a backend (B), or both (F & B). Notice that although each message includes a byte count at the beginning, the message format is defined so that the message end can be found without reference to the byte count. This aids validity checking. (The CopyData message is an exception, because it forms part of a data stream; the contents of any individual CopyData message cannot be interpretable on their own.)

通信包格式样例

Query (F)  
Byte1('Q')  
Identifies the message as a simple query.  
  
Int32  
Length of message contents in bytes, including self.  
  
String  
The query string itself.  
  
  
CopyData (F & B)  
Byte1('d')  
Identifies the message as COPY data.  
  
Int32  
Length of message contents in bytes, including self.  
  
Byten  
Data that forms part of a COPY data stream.   
Messages sent from the backend will always correspond to single data rows,   
but messages sent by frontends might divide the data stream arbitrarily.  
  
CopyDone (F & B)  
Byte1('c')  
Identifies the message as a COPY-complete indicator.  
  
Int32(4)  
Length of message contents in bytes, including self.  

协议处理代码样例

src/interfaces/libpq/fe-protocol3.c

                                case 'C':               /* command complete */  
                                        if (pqGets(&conn->workBuffer, conn))  
                                                return;  
                                        if (conn->result == NULL)  
                                        {  
                                                conn->result = PQmakeEmptyPGresult(conn,  
                                                                                                                   PGRES_COMMAND_OK);  
                                                if (!conn->result)  
                                                {  
                                                        printfPQExpBuffer(&conn->errorMessage,  
                                                                                          libpq_gettext("out of memory"));  
                                                        pqSaveErrorResult(conn);  
                                                }  
                                        }  
                                        if (conn->result)  
                                                strlcpy(conn->result->cmdStatus, conn->workBuffer.data,  
                                                                CMDSTATUS_LEN);  
                                        conn->asyncStatus = PGASYNC_READY;  
                                        break;  

某 PostgreSQL 代理软件

https://github.com/CrunchyData/crunchy-proxy

https://github.com/wgliang/pgproxy

某 PostgreSQL 协议测试软件

https://github.com/tatsuo-ishii/pgproto

http://dalibo.github.io/pgshark/

pgproto的使用简介

yum install -y automake    
git clone https://github.com/tatsuo-ishii/pgproto    
    
cd pgproto    
touch configure.ac Makefile Makefile.ac    
autoreconf -ivf    
    
    
export PGPORT=1921    
export PGDATA=/data01/pg/pg_root$PGPORT      
export PGHOME=/usr/pgsql-10     
export LD_LIBRARY_PATH=$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH      
export PATH=$PGHOME/bin:$PATH:.      
export MANPATH=$PGHOME/share/man:$MANPATH      
export PGHOST=$PGDATA      
export PGUSER=postgres      
export PGDATABASE=postgres      
    
./configure --prefix=/var/lib/pgsql/pgp    
make    
make install    
psql    
create table aaa(id int);    
insert into aaa select generate_series(1,100);    
vi test.sql    
    
#    
# Test data example    
#    
'Q'	"SELECT * FROM aaa"    
'Y'    
'P'	"S1"	"BEGIN"	0    
'B'	""	"S1"	0	0	0    
'E'	""	0    
'C'	'S'	"S1"    
'P'	"foo"	"SELECT 1"	0    
'B'	"myportal"	"foo"	0	0	0    
'E'	"myportal"	0    
'P'	"S2"	"COMMIT"	0    
'B'	""	"S2"	0	0	0    
'E'	""	0    
'C'	'S'	"S2"    
'S'    
'Y'    
'X'    
./pgp/bin/pgproto -h $PGDATA -p 1921 -u postgres -d postgres  -f ./test.sql    
FE=> Query(query="SELECT * FROM aaa")    
<= BE RowDescription    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
<= BE DataRow    
.............. 100行    
<= BE CommandComplete(SELECT 1)    
<= BE ReadyForQuery(I)    
FE=> Parse(stmt="S1", query="BEGIN")    
FE=> Bind(stmt="S1", portal="")    
FE=> Execute(portal="")    
FE=> Close(stmt="S1")    
FE=> Parse(stmt="foo", query="SELECT 1")    
FE=> Bind(stmt="foo", portal="myportal")    
FE=> Execute(portal="myportal")    
FE=> Parse(stmt="S2", query="COMMIT")    
FE=> Bind(stmt="S2", portal="")    
FE=> Execute(portal="")    
FE=> Close(stmt="S2")    
FE=> Sync    
<= BE ParseComplete    
<= BE BindComplete    
<= BE CommandComplete(BEGIN)    
<= BE CloseComplete    
<= BE ParseComplete    
<= BE BindComplete    
<= BE DataRow    
<= BE CommandComplete(SELECT 1)    
<= BE ParseComplete    
<= BE BindComplete    
<= BE CommandComplete(COMMIT)    
<= BE CloseComplete    
<= BE ReadyForQuery(I)    
FE=> Terminate    
相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
6月前
|
存储 关系型数据库 测试技术
拯救海量数据:PostgreSQL分区表性能优化实战手册(附压测对比)
本文深入解析PostgreSQL分区表的核心原理与优化策略,涵盖性能痛点、实战案例及压测对比。首先阐述分区表作为继承表+路由规则的逻辑封装,分析分区裁剪失效、全局索引膨胀和VACUUM堆积三大性能杀手,并通过电商订单表崩溃事件说明旧分区维护的重要性。接着提出四维设计法优化分区策略,包括时间范围分区黄金法则与自动化维护体系。同时对比局部索引与全局索引性能,展示后者在特定场景下的优势。进一步探讨并行查询优化、冷热数据分层存储及故障复盘,解决分区锁竞争问题。
816 2
|
关系型数据库 分布式数据库 PolarDB
|
关系型数据库 分布式数据库 数据库
|
关系型数据库 分布式数据库 定位技术
PolarDB for PostgreSQL 开源必读手册-VACUUM处理(中)
PolarDB for PostgreSQL 开源必读手册-VACUUM处理
423 0
|
关系型数据库 分布式数据库 PolarDB
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
562 0
|
存储 缓存 关系型数据库
|
存储 SQL 并行计算
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍(中)
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍
691 0
|
存储 算法 安全
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍(下)
PolarDB for PostgreSQL 开源必读手册-开源PolarDB for PostgreSQL架构介绍
577 0
|
关系型数据库 分布式数据库 开发工具

相关产品

  • 云原生数据库 PolarDB
  • 推荐镜像

    更多