halcon学习笔记——机器视觉工程应用的开发思路

简介:

机器视觉工程应用主要可划分为硬件和软件两大部分。

硬件:工程应用的第一步就是硬件选型。硬件选型很关键,因为它是你后面工作的基础。主要是光源、工业相机和镜头选择。

软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块。


机器视觉工程应用的基本开发思路是:

一、图像采集,二、图像分割,三、形态学处理,四、特征提取,五、输出结果。

下面在Halcon下对这四个步骤进行讲解。

一、图像采集:

Halcon通过imageacquisition interfaces对各种图像采集卡及各种工业相机进行支持。其中包括:模拟视频信号,数字视频信号Camera Link,数字视频信号IEEE 1394,数字视频信号USB2.0,数字视频信号Gigabit Ethernet等。 
Halcon通过统一的接口封装上述不同相机的image acquisition interfaces,从而达到算子统一化。不同的相机只需更改几个参数就可变更使用。

Halcon图像获取的思路:1、打开设备,获得该设备的句柄。2、调用采集算子,获取图像。

1、打开设备,获得该设备的句柄。

 
open_framegrabber('DahengCAM', 1, 1, 0, 0, 0, 0, 'interlaced', 8, 'gray', -1, 'false','HV-13xx', '1', 1, -1, AcqHandle) //连接相机,并设置相关参数

Parameter

Values

Default

Type

Description

Name

'DahengCAM'

 

string

Name of the HALCON interface.

HorizontalResolution

1

1

 

1表示水平全部,2为水平1/2,表示图像截取。

VerticalResolution

1 1  

同上,表示垂直方向。

ImageWidth

<width>

0

integer

所需的图像部分的宽度('0 '代表了完整的图像)。

ImageHeight <height> 0 integer 所需的图像部分的高度(0”是完整的图像)
StartRow <width> 0 integer 所需的图像部分左上方的像素行坐标
StartColumn <column> 0 integer 所需的图像部分左上方的像素列坐标
Field       忽视
BitsPerChannel       忽视
ColorSpace 'default', 'gray', 'rgb' 'gray' string HALCON图像的通道模式
Generic       忽视
ExternalTrigger

'false', 'true'

'false' string 外部触发状态
CameraType 'HV-13xx', 'HV-20xx', 'HV-30xx', 'HV-31xx','HV-50xx', 'SV-xxxx' 'HV-13xx' string 所连接的摄像机系列型。
Device '1', '2', '3', ... '1' string 相机连接第一个设备号“1”,第二个设备编号“2”。
Port       忽视
LineIn       忽视

2、调用采集算子,获取图像。

grab_image (Image, AcqHandle) //(同步采集)完后处理图像,然后再采集图像。采集图像的速率受处理速度影响。
grab_image_async (Image, AcqHandle,MaxDelay) //(异步采集),一幅画面采集完后相机马上采集下一幅画面,不受处理速度影响。其中第三个参数为:MaxDelay,表示异步采集时可以允许的最大延时,本次采集命令距上次采集命令的时间不能超出MaxDelay,超出即重新采集。

图像采集其他相关算子:

     grab_image_start,该算子开始命令相机进行异步采集。只能与grab_image_async(异步采集)一起使用。

例子:

* Select a suitable image acquisition interface nameAcqName
open_framegrabber(AcqName,1,1,0,0,0,0,'default',-1,'default',-1.0,\
                 'default','default','default',-1,-1,AcqHandle)
grab_image(Image1,AcqHandle)//进行同步采集
* Start next grab
grab_image_start(AcqHandle,-1.0)//命令相机进行异步图像采集开始
* Process Image1 ...
* Finish asynchronous grab + start next grab
grab_image_async(Image2,AcqHandle,-1.0)//读取异步采集的图像
* Process Image2 ...
close_framegrabber(AcqHandle)

3、相机参数读写

读取相机参数:

info_framegrabber( : : NameQuery : InformationValueList)

写相机参数:

set_framegrabber_param( : : AcqHandleParamValue : )

 

二、图像分割:

图像分割的定义: 
所谓图像分割是指将图像中具有特殊含义的不同区域分割开来,这些区域是互相不交叉的,每个区域都满足特定区域的一致性。

1、基于阈值的图像分割

threshold —采用全局阈值分割图像。

格式:    threshold(Image : Region : MinGray, MaxGray : )

自动全局阈值分割的方法:

(1)计算灰度直方图 
(2)寻找出现频率最多的灰度值(最大值) 
(3)在threshold中使用与最大值有一定距离的值作为阈值

代码:

gray_histo(Regions, Image,AbsoluteHisto, RelativeHisto) //计算出图像区域内的绝对和相对灰度值直方图。
PeakGray := sort_index(AbsoluteHisto)[255] //求出出现频率最多的灰度值
threshold(Image,Region,0,PeakGray-25)

bin_threshold — 使用一个自动确定的阈值分割图像。

格式:    bin_threshold(Image : Region : : )

 

dyn_threshold —使用一个局部阈值分割图像。

格式:    dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )

例子:

mean_image(Image,Mean,21,21)
dyn_threshold(Image,Mean, RegionDynThresh,15,'dark')

var_threshold —阈值图像局部均值和标准差的分析。

格式:    var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDark : ) 

 

2、基于边缘的图像分割:寻找区域之间的边界

watersheds —从图像中提取分水岭和盆地。

格式:    watersheds(Image : Basins, Watersheds : : )

watersheds_threshold —使用阈值从图像中提取分水岭和盆地。

格式:    watersheds_threshold(Image : Basins : Threshold : )

 

3、基于区域的图像分割:直接创建区域

 

三、形态学处理

形态学处理以集合运算为基础。

腐蚀、膨胀、开操作、闭操作是所有形态学图像处理的基础。

开操作(先腐蚀再膨胀)使对象的轮廓变得光滑,断开狭窄的间断和消除细的突出物。

闭操作(先膨胀再腐蚀)消弥狭窄的间断和长细的鸿沟,消除小的孔洞,填补轮廓线的断裂。

形体学基础算子:

erosion1 
dilation1 
opening 
closing

常用的形态学相关算子 
connection 
select_shape 
opening_circle 
closing_circle 
opening_rectangle1 
closing_rectangle1 
complement 
difference 
intersection 
union1 
shaps_trans 
fill_up

形态学高级算子: 
boundary 
skeleton

 

四、特征提取:

1、区域特征:

area 
moments

smallest_rectangle1

smallest_circle

convexity:区域面积与凸包面积的比例

contlength:区域边界的长度

compactness

2、灰度特征

estimate_noise

select_gray

 

五、输出结果:

(1)获取满足条件的区域

(2)区域分类,比如OCR

(3)测量

(4)质量检测

作者: 韩兆新
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
分类:  [04]halcon随笔
标签:  halcon学习笔记

本文转自韩兆新博客博客园博客,原文链接http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html :http,如需转载请自行联系原作者
目录
相关文章
|
存储 自然语言处理 数据可视化
可视化FAISS矢量空间并调整RAG参数提高结果精度
随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。
524 0
|
5月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
228 8
|
机器学习/深度学习 人工智能 自然语言处理
秒级响应 + 99.9%准确率:法律行业文本比对技术解析
本工具基于先进AI技术,采用自然语言处理和语义匹配算法,支持PDF、Word等格式,实现法律文本的智能化比对。具备高精度语义匹配、多格式兼容、高性能架构及智能化标注与可视化等特点,有效解决文本复杂性和法规更新难题,提升法律行业工作效率。
732 9
|
9月前
|
存储 固态存储 文件存储
一台电脑最多能接几个硬盘?
电脑硬盘扩展指南:从硬件接口(SATA、M.2、USB)到供电散热,再到操作系统盘符限制,本文全面解析一台电脑最多能接多少硬盘。普通用户适合2-4块硬盘,专业人士可扩展至8块以上,企业服务器则无明确上限。通过RAID阵列或NAS设备,还能突破传统限制,满足海量存储需求。了解这些技巧,助您合理规划存储方案!
|
JavaScript
Vue3弹性布局(Flex)
这是一个基于 Vue 的弹性布局组件库,提供了丰富的参数配置,如宽度、方向、换行等,支持自定义对齐方式和间隙设置。在线预览展示了不同布局效果,包括单选、按钮和滑动输入条等组件的使用示例。
582 0
Vue3弹性布局(Flex)
|
存储 算法 机器人
Threejs路径规划_基于A*算法案例V2
这篇文章详细介绍了如何在Three.js中使用A*算法进行高效的路径规划,并通过三维物理电路的实例演示了路径计算和优化的过程。
475 0
|
JavaScript 前端开发 Java
驼峰命名规范及其在代码可读性中的重要性
驼峰命名规范及其在代码可读性中的重要性
670 15
|
移动开发 前端开发 JavaScript
HTML5 Canvas详解及应用
HTML5 Canvas 允许通过 JavaScript 在网页上动态绘制图形、动画等视觉内容。首先在 HTML 中定义 `&lt;canvas&gt;` 元素,并通过 JavaScript 获取画布上下文进行绘制。常见方法包括绘制矩形、路径、圆形和文本,以及处理图像和创建动画效果。适用于游戏开发、数据可视化、图像编辑和动态图形展示等多种应用场景。需要注意性能优化、无状态绘制及自行处理事件等问题。
|
算法 PyTorch 调度
ResNet 高精度预训练模型在 MMDetection 中的最佳实践
作为最常见的骨干网络,ResNet 在目标检测算法中起到了至关重要的作用。许多目标检测经典算法,如 RetinaNet 、Faster R-CNN 和 Mask R-CNN 等都是以 ResNet 为骨干网络,并在此基础上进行调优。同时,大部分后续改进算法都会以 RetinaNet 、Faster R-CNN 和 Mask R-CNN 为 baseline 进行公平对比。
1165 0
ResNet 高精度预训练模型在 MMDetection 中的最佳实践
|
数据采集 JSON 自然语言处理
打造领域专属的大语言模型
大模型虽擅长自然语言处理,但在专业领域常表现不足。微调通过利用特定领域的数据,在已有大模型基础上进一步训练,能显著提升模型的专业表现,同时有效控制成本。微调前需确定领域、收集并格式化数据;过程中涉及数据上传、模型训练及状态监控;最后通过验证测试评估效果。此法既经济又高效,特别适合中小型企业及个人用户。