文本聚类(1)——概念

简介:

什么是文本聚类

文本聚类是搜索引擎和语义web的基本技术,本文简单的文本聚类算法,对于想学搜索技
术的初学者有一定入门作用的。这里会用到TF/IDF权重,用余弦夹角计算文本相似度,
用方差计算两个数据间欧式距离,用k-means进行数据聚类等数学和统计知识.

文本聚类(Text clustering)文档聚类主要是依据著名的聚类假设:同类的文档相似度较大,而不同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程,以及不需要预先对文档手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,已经成为对文本信息进行有效地组织、摘要和导航的重要手段,为越来越多的研究人员所关注。

文本聚类的应用

①文档聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤,比较典型的例子是哥伦比亚大学开发的多文档文摘系统Newsblaster。Newsblaster将每天发生的重要新闻文本进行聚类处理,并对同主题文档进行冗余消除、信息融合、文本生成等处理,从而生成一篇简明扼要的摘要文档;

②对搜索引擎返回的结果进行聚类,使用户迅速定位到所需要的信息。Hua-Jun Zeng等人提出了对搜索引擎返回的结果进行聚类的学习算法。比较典型的系统则有vivisimo和infonetware等。系统允许用户输入检索关键词,而后对检索到的文档进行聚类处理,并输出各个不同类别的简要描述,从而可以缩小检索的范围,用户只需关注比较有希望的主题。另外这种方法也可以为用户二次检索提供线索;

③对用户感兴趣的文档(如用户浏览器cache中的网页)聚类,从而发现用户的兴趣模式并用于信息过滤和信息主动推荐等服务。

④聚类技术还可以用来改善文本分类的结果,如俄亥俄州立大学的Y.C. Fang, S. Parthasarathy和F. Schwartz等人的工作。

⑤数字图书馆服务。通过SOM神经网络等方法,可以将高维空间的文档拓扑保序地映射到二维空间,使得聚类结果可视化和便于理解,如SOMlib[ ]系统;

文档集合的自动整理。如Scatter/Gather[ ]是一个基于聚类的文档浏览系统。而微软的Ji-Rong Wen等人则利用聚类技术对用户提出的查询记录进行聚类,并利用结果更新搜索引擎网站的FAQ。

文本聚类的实现方式

划分法

(partitioning methods):给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;

image

层次法

(hierarchical methods):这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;

image

基于密度的方法

(density-based methods):基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;

基于网格的方法

(grid-based methods):这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;

基于模型的方法

(model-based methods):基于模型的方法给每一个聚类假定一个模型,然后去寻找一个能很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。通常有两种尝试方向:统计的方案和神经网络的方案

聚类模型的示例

image

在数学中相当于聚集在一起的点,成堆的出现。

聚类的模糊性

image

聚类的意义

提高检索的查准率

——相似文档一般对相同查询相关度比较高。

提高向量空间模型的检索速度

——物理上或逻辑上相似的文档放在一起形成一个类,因此有利于提高检索效率。

提供导航

——把多个文档聚集在一起,提供用户在聚类层次上浏览文档集,而不需要浏览每篇文章。因此有助于帮助用户快速定位到有用的信息区域。

聚类的相似度

聚类中心点:用中心向量表示聚类,聚类间相似度采用向量夹角余弦。

image

单链:两个聚类间最相似文档的相似度来表示聚类相似度。

image

全链:两个聚类间最不相似文档的相似度来表示聚类相似度。

image

组平均:两个聚类间文档的平均相似度来表示聚类相似度。

K平均聚类:

image

[reply]跟聚类相关的一些资料http://yunpan.cn/Q7Pp3Y33uXVhU  提取码 d789 [/reply]

目录
相关文章
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】算法术语、决策函数、概率模型、神经网络的详细讲解(图文解释)
【机器学习】算法术语、决策函数、概率模型、神经网络的详细讲解(图文解释)
169 1
|
16天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
41 3
|
2月前
|
机器学习/深度学习 存储 算法
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
107 7
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
【热门话题】常见分类算法解析
本文介绍了6种常见分类算法:逻辑回归、朴素贝叶斯、决策树、支持向量机、K近邻和神经网络。逻辑回归适用于线性问题,朴素贝叶斯在高维稀疏数据中有效,决策树适合规则性任务,SVM擅长小样本非线性问题,KNN对大规模数据效率低,神经网络能处理复杂任务。选择算法时需考虑数据特性、任务需求和计算资源。
97 0
|
6月前
|
机器学习/深度学习 自然语言处理 决策智能
8分SCI | 揭示随机森林的解释奥秘:探讨LIME技术如何提高模型的可解释性与可信度!
8分SCI | 揭示随机森林的解释奥秘:探讨LIME技术如何提高模型的可解释性与可信度!
313 1
|
6月前
|
机器学习/深度学习 算法 数据可视化
【模式识别】探秘分类奥秘:最近邻算法解密与实战
【模式识别】探秘分类奥秘:最近邻算法解密与实战
63 0
|
6月前
|
机器学习/深度学习 存储 算法
【模式识别】探秘分类奥秘:K-近邻算法解密与实战
【模式识别】探秘分类奥秘:K-近邻算法解密与实战
68 0
|
6月前
|
机器学习/深度学习 数据挖掘 BI
【数据挖掘】回归分析定义、概念、分类、过程讲解(图文解释 超详细)
【数据挖掘】回归分析定义、概念、分类、过程讲解(图文解释 超详细)
296 0
|
定位技术
定义系统、模型、结构等概念|认知建模笔记翻译(4)
定义系统、模型、结构等概念|认知建模笔记翻译(4)
121 0
|
数据采集 机器学习/深度学习 数据可视化
简单线性回归:预测事物间简单关系的利器
简单线性回归:预测事物间简单关系的利器
下一篇
无影云桌面