Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

Spark MLlib架构解析

  • MLlib的底层基础解析
  • MLlib的算法库分析
    •   分类算法 
    •   回归算法
    •       聚类算法
    •       协同过滤
  • MLlib的实用程序分析

 

 

 

从架构图可以看出MLlib主要包含三个部分:

  • 底层基础:包括Spark的运行库、矩阵库和向量库;
  • 算法库:包含广义线性模型、推荐系统、聚类、决策树和评估的算法;
  • 实用程序:包括测试数据的生成、外部数据的读入等功能。

 

 

 

 

MLlib的底层基础解析

  底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPACK开发的线性代数库Breeze。

  MLlib支持本地的密集向量和稀疏向量,并且支持标量向量。

  MLlib同时支持本地矩阵和分布式矩阵,支持的分布式矩阵分为RowMatrix、IndexedRowMatrix、CoordinateMatrix等。

  关于密集型和稀疏型的向量Vector的示例如下所示。

      

                

 

 

 

   疏矩阵在含有大量非零元素的向量Vector计算中会节省大量的空间并大幅度提高计算速度,如下图所示。

             

 

 

   标量LabledPoint在实际中也被大量使用,例如判断邮件是否为垃圾邮件时就可以使用类似于以下的代码:

              

 

 

 

  可以把表示为1.0的判断为正常邮件,而表示为0.0则作为垃圾邮件来看待。

  对于矩阵Matrix而言,本地模式的矩阵如下所示。

        

 

 

 

 

   分布式矩阵如下所示。

        

 

 

   RowMatrix直接通过RDD[Vector]来定义并可以用来统计平均数、方差、协同方差等:

       

      

 

 

 

   而IndexedRowMatrix是带有索引的Matrix,但其可以通过toRowMatrix方法来转换为RowMatrix,从而利用其统计功能,代码示例如下所示。

      

 

 

 

   CoordinateMatrix常用于稀疏性比较高的计算中,是由RDD[MatrixEntry]来构建的,MatrixEntry是一个Tuple类型的元素,其中包含行、列和元素值,代码示例如下所示:

          

 

 

 

 

MLlib的算法库分析

  下图是MLlib算法库的核心内容。

        

 

   在这里我们分析一些Spark中常用的算法:

 

   

 

 

  1) 分类算法

  分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类。分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测、精确营销、客户获取、个性偏好等。MLlib 目前支持分类算法有:逻辑回归、支持向量机、朴素贝叶斯和决策树。

  案例:导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差。

复制代码
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
 
// 加载和解析数据文件
val data = sc.textFile("mllib/data/sample_svm_data.txt")
val parsedData = data.map { line =>
  val parts = line.split(' ')
  LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)
}
 
// 设置迭代次数并进行进行训练
val numIterations = 20
val model = SVMWithSGD.train(parsedData, numIterations)
 
// 统计分类错误的样本比例
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)
复制代码

 

 

 

   

  2) 回归算法

  回归算法属于监督式学习,每个个体都有一个与之相关联的实数标签,并且我们希望在给出用于表示这些实体的数值特征后,所预测出的标签值可以尽可能接近实际值。MLlib 目前支持回归算法有:线性回归、岭回归、Lasso和决策树。

  案例:导入训练数据集,将其解析为带标签点的RDD,使用 LinearRegressionWithSGD 算法建立一个简单的线性模型来预测标签的值,最后计算均方差来评估预测值与实际值的吻合度。

复制代码
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
 
// 加载和解析数据文件
val data = sc.textFile("mllib/data/ridge-data/lpsa.data")
val parsedData = data.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)
}
 
//设置迭代次数并进行训练
val numIterations = 20
val model = LinearRegressionWithSGD.train(parsedData, numIterations)
 
// 统计回归错误的样本比例
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count
println("training Mean Squared Error = " + MSE)
复制代码

 

 

 

  

  3)  聚类算法

  聚类算法属于非监督式学习,通常被用于探索性的分析,是根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似,常见的典型应用场景有客户细分、客户研究、市场细分、价值评估。MLlib 目前支持广泛使用的KMmeans聚类算法。

  案例:导入训练数据集,使用 KMeans 对象来将数据聚类到两个类簇当中,所需的类簇个数会被传递到算法中,然后计算集内均方差总和(WSSSE),可以通过增加类簇的个数 k 来减小误差。 实际上,最优的类簇数通常是 1,因为这一点通常是WSSSE图中的 “低谷点”。

复制代码
import org.apache.spark.mllib.clustering.KMeans
 
// 加载和解析数据文件
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map( _.split(' ').map(_.toDouble))
// 设置迭代次数、类簇的个数
val numIterations = 20
val numClusters = 2
 
// 进行训练
val clusters = KMeans.train(parsedData, numClusters, numIterations)
 
// 统计聚类错误的样本比例
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
复制代码

 

 

 

 

  4) 协同过滤

  协同过滤常被应用于推荐系统,这些技术旨在补充用户-商品关联矩阵中所缺失的部分。MLlib当前支持基于模型的协同过滤,其中用户和商品通过一小组隐语义因子进行表达,并且这些因子也用于预测缺失的元素。

  案例:导入训练数据集,数据每一行由一个用户、一个商品和相应的评分组成。假设评分是显性的,使用默认的ALS.train()方法,通过计算预测出的评分的均方差来评估这个推荐模型。

复制代码
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
 
// 加载和解析数据文件
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)
})
 
// 设置迭代次数
val numIterations = 20
val model = ALS.train(ratings, 1, 20, 0.01)
 
// 对推荐模型进行评分
val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings.map{
case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map{
case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)
}.reduce(_ + _)/ratesAndPreds.count
println("Mean Squared Error = " + MSE)
复制代码

 

 

 

 

 

 

MLlib的实用程序分析

  实用程序部分包括数据的验证器、Label的二元和多元的分析器、多种数据生成器、数据加载器。

        


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6785144.html,如需转载请自行联系原作者

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
137 4
|
2月前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
76 1
|
30天前
|
运维 监控 持续交付
微服务架构解析:跨越传统架构的技术革命
微服务架构(Microservices Architecture)是一种软件架构风格,它将一个大型的单体应用拆分为多个小而独立的服务,每个服务都可以独立开发、部署和扩展。
183 36
微服务架构解析:跨越传统架构的技术革命
|
1月前
|
存储 Linux API
深入探索Android系统架构:从内核到应用层的全面解析
本文旨在为读者提供一份详尽的Android系统架构分析,从底层的Linux内核到顶层的应用程序框架。我们将探讨Android系统的模块化设计、各层之间的交互机制以及它们如何共同协作以支持丰富多样的应用生态。通过本篇文章,开发者和爱好者可以更深入理解Android平台的工作原理,从而优化开发流程和提升应用性能。
|
2月前
|
弹性计算 持续交付 API
构建高效后端服务:微服务架构的深度解析与实践
在当今快速发展的软件行业中,构建高效、可扩展且易于维护的后端服务是每个技术团队的追求。本文将深入探讨微服务架构的核心概念、设计原则及其在实际项目中的应用,通过具体案例分析,展示如何利用微服务架构解决传统单体应用面临的挑战,提升系统的灵活性和响应速度。我们将从微服务的拆分策略、通信机制、服务发现、配置管理、以及持续集成/持续部署(CI/CD)等方面进行全面剖析,旨在为读者提供一套实用的微服务实施指南。
|
2月前
|
SQL 数据可视化 数据库
多维度解析低代码:从技术架构到插件生态
本文深入解析低代码平台,涵盖技术架构、插件生态及应用价值。通过图形化界面和模块化设计,低代码平台降低开发门槛,提升效率,支持企业快速响应市场变化。重点分析开源低代码平台的优势,如透明架构、兼容性与扩展性、可定制化开发等,探讨其在数据处理、功能模块、插件生态等方面的技术特点,以及未来发展趋势。
|
2月前
|
负载均衡 Java 持续交付
深入解析微服务架构中的服务发现与负载均衡
深入解析微服务架构中的服务发现与负载均衡
80 7
|
2月前
|
SQL 数据可视化 数据库
多维度解析低代码:从技术架构到插件生态
本文深入解析低代码平台,从技术架构到插件生态,探讨其在企业数字化转型中的作用。低代码平台通过图形化界面和模块化设计降低开发门槛,加速应用开发与部署,提高市场响应速度。文章重点分析开源低代码平台的优势,如透明架构、兼容性与扩展性、可定制化开发等,并详细介绍了核心技术架构、数据处理与功能模块、插件生态及数据可视化等方面,展示了低代码平台如何支持企业在数字化转型中实现更高灵活性和创新。
53 1
|
2月前
|
缓存 监控 网络协议
深入解析微服务架构中的服务发现机制
深入解析微服务架构中的服务发现机制
40 1
|
2月前
|
存储 边缘计算 安全
深入解析边缘计算:架构、优势与挑战
深入解析边缘计算:架构、优势与挑战
60 0

热门文章

最新文章

推荐镜像

更多