高可用Hadoop平台-运行MapReduce程序

简介:

1.概述

  最近有同学反应,如何在配置了HA的Hadoop平台运行MapReduce程序呢?对于刚步入Hadoop行业的同学,这个疑问却是会存在, 其实仔细想想,如果你之前的语言功底不错的,应该会想到自动重连,自动重连也可以帮我我们解决运行MapReduce程序的问题。然后,今天我赘述的是利 用Hadoop的Java API 来实现。

2.介绍

  下面直接附上代码,代码中我都有注释。

2.1Java操作HDFS HA的API

  代码如下:


/**
 * 
 */
package cn.hdfs.mr.example;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

/**
 * @author dengjie
 * @date 2015年3月24日
 * @description TODO
 */
public class DFS {

    public static void main(String[] args) {
    Configuration conf = new Configuration();
    conf.set("fs.defaultFS", "hdfs://cluster1");//指定hdfs的nameservice为cluster1,是NameNode的URI
    conf.set("dfs.nameservices", "cluster1");//指定hdfs的nameservice为cluster1
    conf.set("dfs.ha.namenodes.cluster1", "nna,nns");//cluster1下面有两个NameNode,分别是nna,nns
    conf.set("dfs.namenode.rpc-address.cluster1.nna", "10.211.55.26:9000");//nna的RPC通信地址
    conf.set("dfs.namenode.rpc-address.cluster1.nns", "10.211.55.27:9000");//nns的RPC通信地址
    conf.set("dfs.client.failover.proxy.provider.cluster1", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");//配置失败自动切换实现方式
    FileSystem fs = null;
    try {
        fs = FileSystem.get(conf);//获取文件对象
        FileStatus[] list = fs.listStatus(new Path("/"));//文件状态集合
        for (FileStatus file : list) {
        System.out.println(file.getPath().getName());//打印目录名
        }
    } catch (IOException e) {
        e.printStackTrace();
    } finally {
        try {
        if (fs != null) {
            fs.close();
        }
        } catch (IOException e) {
        e.printStackTrace();
        }
    }
    }

}

  接下来,附上 Java 运行 MapReduce 程序的 API 代码。

2.2Java 运行 MapReduce 程序的 API 

  以 WordCount 为例子,代码如下:


package cn.jpush.hdfs.mr.example;

import java.io.IOException;
import java.util.Random;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import cn.jpush.hdfs.utils.ConfigUtils;

/**
 * 
 * @author dengjie
 * @date 2014年11月29日
 * @description Wordcount的例子是一个比较经典的mapreduce例子,可以叫做Hadoop版的hello world。
 *              它将文件中的单词分割取出,然后shuffle,sort(map过程),接着进入到汇总统计
 *              (reduce过程),最后写道hdfs中。基本流程就是这样。
 */
public class WordCount {

    private static Logger log = LoggerFactory.getLogger(WordCount.class);

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    /*
     * 源文件:a b b
     * 
     * map之后:
     * 
     * a 1
     * 
     * b 1
     * 
     * b 1
     */
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());// 整行读取
        while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());// 按空格分割单词
        context.write(word, one);// 每次统计出来的单词+1
        }
    }
    }

    /*
     * reduce之前:
     * 
     * a 1
     * 
     * b 1
     * 
     * b 1
     * 
     * reduce之后:
     * 
     * a 1
     * 
     * b 2
     */
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
        sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
    }

    @SuppressWarnings("deprecation")
    public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    conf.set("fs.defaultFS", "hdfs://cluster1");
    conf.set("dfs.nameservices", "cluster1");
    conf.set("dfs.ha.namenodes.cluster1", "nna,nns");
    conf.set("dfs.namenode.rpc-address.cluster1.nna", "10.211.55.26:9000");
    conf.set("dfs.namenode.rpc-address.cluster1.nns", "10.211.55.27:9000");
    conf.set("dfs.client.failover.proxy.provider.cluster1", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");
    long random1 = new Random().nextLong();// 重定下输出目录
    log.info("random1 -> " + random1);
    
    Job job1 = new Job(conf, "word count");
    job1.setJarByClass(WordCount.class);
    job1.setMapperClass(TokenizerMapper.class);// 指定Map计算的类
    job1.setCombinerClass(IntSumReducer.class);// 合并的类
    job1.setReducerClass(IntSumReducer.class);// Reduce的类
    job1.setOutputKeyClass(Text.class);// 输出Key类型
    job1.setOutputValueClass(IntWritable.class);// 输出值类型  
    
    FileInputFormat.addInputPath(job1, new Path("/home/hdfs/test/hello.txt"));// 指定输入路径
    FileOutputFormat.setOutputPath(job1, new Path(String.format(ConfigUtils.HDFS.WORDCOUNT_OUT, random1)));// 指定输出路径

    System.exit(job1.waitForCompletion(true) ? 0 : 1);// 执行完MR任务后退出应用
    }
}

3.运行结果

  下面附上部分运行 Log 日志,如下所示:

[Job.main] - Running job: job_local551164419_0001
2015-03-24 11:52:09 INFO  [LocalJobRunner.Thread-12] - OutputCommitter set in config null
2015-03-24 11:52:09 INFO  [LocalJobRunner.Thread-12] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - Waiting for map tasks
2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - Starting task: attempt_local551164419_0001_m_000000_0
2015-03-24 11:52:10 INFO  [ProcfsBasedProcessTree.LocalJobRunner Map Task Executor #0] - ProcfsBasedProcessTree currently is supported only on Linux.
2015-03-24 11:52:10 INFO  [Task.LocalJobRunner Map Task Executor #0] -  Using ResourceCalculatorProcessTree : null
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Processing split: hdfs://cluster1/home/hdfs/test/hello.txt:0+24
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - (EQUATOR) 0 kvi 26214396(104857584)
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - mapreduce.task.io.sort.mb: 100
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - soft limit at 83886080
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - bufstart = 0; bufvoid = 104857600
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - kvstart = 26214396; length = 6553600
2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - 
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Starting flush of map output
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Spilling map output
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - bufstart = 0; bufend = 72; bufvoid = 104857600
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - kvstart = 26214396(104857584); kvend = 26214352(104857408); length = 45/6553600
2015-03-24 11:52:10 INFO  [MapTask.LocalJobRunner Map Task Executor #0] - Finished spill 0
2015-03-24 11:52:10 INFO  [Task.LocalJobRunner Map Task Executor #0] - Task:attempt_local551164419_0001_m_000000_0 is done. And is in the process of committing
2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - map
2015-03-24 11:52:10 INFO  [Task.LocalJobRunner Map Task Executor #0] - Task 'attempt_local551164419_0001_m_000000_0' done.
2015-03-24 11:52:10 INFO  [LocalJobRunner.LocalJobRunner Map Task Executor #0] - Finishing task: attempt_local551164419_0001_m_000000_0
2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - map task executor complete.
2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - Waiting for reduce tasks
2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - Starting task: attempt_local551164419_0001_r_000000_0
2015-03-24 11:52:10 INFO  [ProcfsBasedProcessTree.pool-6-thread-1] - ProcfsBasedProcessTree currently is supported only on Linux.
2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] -  Using ResourceCalculatorProcessTree : null
2015-03-24 11:52:10 INFO  [ReduceTask.pool-6-thread-1] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@1197414
2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - MergerManager: memoryLimit=1503238528, maxSingleShuffleLimit=375809632, mergeThreshold=992137472, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2015-03-24 11:52:10 INFO  [EventFetcher.EventFetcher for fetching Map Completion Events] - attempt_local551164419_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2015-03-24 11:52:10 INFO  [LocalFetcher.localfetcher#1] - localfetcher#1 about to shuffle output of map attempt_local551164419_0001_m_000000_0 decomp: 50 len: 54 to MEMORY
2015-03-24 11:52:10 INFO  [InMemoryMapOutput.localfetcher#1] - Read 50 bytes from map-output for attempt_local551164419_0001_m_000000_0
2015-03-24 11:52:10 INFO  [MergeManagerImpl.localfetcher#1] - closeInMemoryFile -> map-output of size: 50, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->50
2015-03-24 11:52:10 INFO  [EventFetcher.EventFetcher for fetching Map Completion Events] - EventFetcher is interrupted.. Returning
2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Merging 1 sorted segments
2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Down to the last merge-pass, with 1 segments left of total size: 46 bytes
2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - Merged 1 segments, 50 bytes to disk to satisfy reduce memory limit
2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - Merging 1 files, 54 bytes from disk
2015-03-24 11:52:10 INFO  [MergeManagerImpl.pool-6-thread-1] - Merging 0 segments, 0 bytes from memory into reduce
2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Merging 1 sorted segments
2015-03-24 11:52:10 INFO  [Merger.pool-6-thread-1] - Down to the last merge-pass, with 1 segments left of total size: 46 bytes
2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
2015-03-24 11:52:10 INFO  [deprecation.pool-6-thread-1] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] - Task:attempt_local551164419_0001_r_000000_0 is done. And is in the process of committing
2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - 1 / 1 copied.
2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] - Task attempt_local551164419_0001_r_000000_0 is allowed to commit now
2015-03-24 11:52:10 INFO  [FileOutputCommitter.pool-6-thread-1] - Saved output of task 'attempt_local551164419_0001_r_000000_0' to hdfs://cluster1/output/result/-3636988299559297154/_temporary/0/task_local551164419_0001_r_000000
2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - reduce > reduce
2015-03-24 11:52:10 INFO  [Task.pool-6-thread-1] - Task 'attempt_local551164419_0001_r_000000_0' done.
2015-03-24 11:52:10 INFO  [LocalJobRunner.pool-6-thread-1] - Finishing task: attempt_local551164419_0001_r_000000_0
2015-03-24 11:52:10 INFO  [LocalJobRunner.Thread-12] - reduce task executor complete.
2015-03-24 11:52:10 INFO  [Job.main] - Job job_local551164419_0001 running in uber mode : false
2015-03-24 11:52:10 INFO  [Job.main] -  map 100% reduce 100%
2015-03-24 11:52:10 INFO  [Job.main] - Job job_local551164419_0001 completed successfully
2015-03-24 11:52:10 INFO  [Job.main] - Counters: 35
    File System Counters
        FILE: Number of bytes read=462
        FILE: Number of bytes written=466172
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=48
        HDFS: Number of bytes written=24
        HDFS: Number of read operations=13
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=4
    Map-Reduce Framework
        Map input records=2
        Map output records=12
        Map output bytes=72
        Map output materialized bytes=54
        Input split bytes=105
        Combine input records=12
        Combine output records=6
        Reduce input groups=6
        Reduce shuffle bytes=54
        Reduce input records=6
        Reduce output records=6
        Spilled Records=12
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=13
        Total committed heap usage (bytes)=514850816
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=24
    File Output Format Counters 
        Bytes Written=24

  原文件如下所示:


a a c v d d
a d d s s x

  Reduce 结果图,如下所示:

4.总结

  我们可以按以下步骤进行验证代码的可用性:

  1. 保证 NNA( active 状态)和 NNS( standby 状态)。注意,DN 节点都是正常运行的。
  2. 然后,我们运行 WordCount 程序,看能否统计出结果。
  3. 若安上述步骤下来,可以统计;我们接着往下执行。若不行,请排查错误,然后继续。
  4. 然后,我们 kill 掉 NNA 节点的 NameNode 进程,此时,NNS 的状态会由 standby 转变为 active
  5. 接着我们在支持 WordCount 程序,看能否统计结果;若是能统计结果,表示代码可用。

  以上就是整个验证的流程。

5.结束语

  这篇文章就分享到这里,如果在验证的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

目录
相关文章
|
5月前
|
数据采集 分布式计算 监控
Hadoop集群长时间运行数据倾斜原因
【6月更文挑战第20天】
52 6
|
5月前
|
分布式计算 监控 网络协议
Hadoop集群长时间运行网络延迟原因
【6月更文挑战第20天】
134 2
|
分布式计算 资源调度 Hadoop
Hadoop学习指南:探索大数据时代的重要组成——Hadoop运行模式(下)
Hadoop学习指南:探索大数据时代的重要组成——Hadoop运行模式(下)
118 0
|
1月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
40 3
|
3月前
|
存储 分布式计算 算法
探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式
在配置Hadoop集群之前,了解这三种模式的特点、适用场景和配置差异是非常重要的。这有助于用户根据个人需求和资源情况,选择最适合自己的Hadoop运行模式。在最初的学习和开发阶段,单机模式和伪分布式模式能为用户提供便利和成本效益。进而,当用户要处理大规模数据集时,完全分布式模式将是理想的选择。
171 2
|
3月前
|
分布式计算 Hadoop Java
Hadoop_MapReduce中的WordCount运行详解
MapReduce的WordCount程序在分布式系统中计算大数据集中单词出现的频率时,提供了一个可以复用和可伸缩的解决方案。它体现了MapReduce编程模型的强大之处:简单、可靠且将任务自动分布到一个集群中去执行。它首先运行一系列的Map任务来处理原始数据,然后通过Shuffle和Sort机制来组织结果,最后通过运行Reduce任务来完成最终计算。因此,即便数据量非常大,通过该模型也可以高效地进行处理。
91 1
|
3月前
|
存储 分布式计算 Hadoop
Hadoop 运行的三种模式
【8月更文挑战第31天】
286 0
|
4月前
|
分布式计算 资源调度 监控
Hadoop中运行Job
【7月更文挑战第10天】
48 2
|
5月前
|
存储 缓存 分布式计算
|
5月前
|
存储 分布式计算 负载均衡
Hadoop集群长时间运行
【6月更文挑战第19天】
50 3

相关实验场景

更多
下一篇
无影云桌面