Splunk Machine Learning Toolkit在回归问题上的应用

简介: Splunk MLTK实现了模型准确性的验证,并且可以通过特征系数来解释为什么会产生这样的模型

在前面的文章中,我们对Splunk Machine Learning Toolkit 3.0.0进行了介绍,今天我们就来聊一下机器学习中最常见的问题:回归。

什么是回归?

回归对数值连续的通常是来预测一个值,比如预测房屋价格、股票走势、产品销售量、未来的天气情况等。线性回归是最简单的一种回归算法,它期望使用一条直线去拟合数据,如图所示:

可以看出,这样直线有很多,那么哪条才是最佳拟合线呢?这就是寻找最佳拟合的问题。

如果预测值和实际值最接近,它应该是最佳拟合线。我们可以用最小二乘法(Least squares)来解决这个问题。

最小二乘法通过最小化误差的平方和寻找最佳函数匹配。

用最小二乘法容易计算,如果数据集存在线性关系,它能拟合的非常好,但对异常值非常敏感。

评价模型的准确性

欠拟合(under-fit)是模型没有很好地捕捉到数据特征,不能够很好地拟合数据;过拟合(over-fitting) 是模型把数据学习的太彻底,模型泛化能力太差,不能很好的预测数据。理想情况下,我们希望既不欠拟合,也不过拟合。

了解了欠拟合和过拟合,我们需要选择一个能反映模型预测能力的评估标准。

和方误差(sum-squared error, SSE),即真实值与模型预测值误差平方。

 

均方误差(mean-square error, MSE),即真实值与模型预测值误差平方的平均值。

方均根差(root-mean-square error, RMSD)也是一种常用的测量数值之间差异的方法。RMSD表示预测的值和实际值之差的样本标准差。

防止过拟合

正则化可以减少过拟合的风险,通过惩罚因子对回归系数进行抑制。

L1正则化表示各个参数绝对值之和;L2正则化表示各个参数平方和的开方值。在常用的回归方法中,岭(Ridge)回归使用L2正则化、Lasso法使用L1正则化、弹性网(Elastic net)使用L1+L2正则化,它们都能有效的避免过拟合。

这些回归算法在Splunk MLTK中可以直接使用,并且不需要编写复杂的代码,甚至变得更简单。

我们来看Splunk MLTK中数值预测用例:第一步,在搜索框内搜索数据,这里我们使用测试数据housing.csv,同样你也可以使用自己的数据;第二步,选择一种回归算法、确定要预测的字段、选择用来预测的字段(特征)、调整训练集和验证集的比例;第三步,填写模型名称并进行训练。

图表详细展示了字段预测值和真实值的差距:

同样Splunk MLTK也实现了模型准确性的验证,并且可以通过特征系数来解释为什么会产生这样的模型:

如果你想了解更多有关机器学习信息,或者在使用Splunk MLTK中有任何疑问,都可以到论坛(http://ask.10data.com)进行留言和讨论。

目录
相关文章
|
Linux 网络安全
linux端口连通性测试telnet、wget、ssh、curl
linux端口连通性测试telnet、wget、ssh、curl
389 0
|
网络协议 Ubuntu Linux
Linux 动态/静态配置ip网卡信息
Linux 动态/静态配置ip网卡信息
692 0
|
8月前
|
人工智能 自然语言处理 API
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
香港大学推出的AutoAgent框架通过自然语言交互实现零代码创建AI智能体,支持多模型接入与自动化工作流编排,在GAIA基准测试中表现优异。
1242 16
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
|
11月前
|
敏捷开发 人工智能 JavaScript
Figma-Low-Code:快速将Figma设计转换为Vue.js应用,支持低代码渲染、数据绑定
Figma-Low-Code 是一个开源项目,能够直接将 Figma 设计转换为 Vue.js 应用程序,减少设计师与开发者之间的交接时间,支持低代码渲染和数据绑定。
787 3
Figma-Low-Code:快速将Figma设计转换为Vue.js应用,支持低代码渲染、数据绑定
|
数据采集 监控 大数据
大数据时代的数据质量与数据治理策略
在大数据时代,高质量数据对驱动企业决策和创新至关重要。然而,数据量的爆炸式增长带来了数据质量挑战,如准确性、完整性和时效性问题。本文探讨了数据质量的定义、重要性及评估方法,并提出数据治理策略,包括建立治理体系、数据质量管理流程和生命周期管理。通过使用Apache Nifi等工具进行数据质量监控和问题修复,结合元数据管理和数据集成工具,企业可以提升数据质量,释放数据价值。数据治理需要全员参与和持续优化,以应对数据质量挑战并推动企业发展。
3196 3
|
12月前
|
运维 监控 Linux
推荐几个不错的 Linux 服务器管理工具
推荐几个不错的 Linux 服务器管理工具
927 6
|
API 开发者
淘宝官方商品、交易、订单、物流、插旗接口接入说明
这些接口涉及淘宝店铺订单管理的关键方面,包括订单列表、订单详情及订单物流信息的获取。订单列表接口(如`taobao.trades.sold.get`和`taobao.topats.trades.sold.get`)帮助商家快速了解订单概览,进行基本管理和统计。订单详情接口(如`taobao.trade.fullinfo.get`和`taobao.topats.trades.fullinfo.get`)提供单个订单的全面信息,便于发货准备和服务支持。订单物流接口则允许跟踪订单的物流状态,确保配送顺畅。使用这些接口需遵循淘宝开放平台的规定,并关注API调用限制与更新。
|
Docker 容器
docker保存镜像、打包tar、加载tar镜像
本文记录docker保存镜像、打包tar、加载tar镜像。
3993 0
|
数据采集 机器学习/深度学习 人工智能
【开源项目推荐】Great Expectations—开源的数据质量工具
【开源项目推荐】Great Expectations—开源的数据质量工具
899 57
|
前端开发 关系型数据库 MySQL
com.mysql.jdbc.Driver 和 com.mysql.cj.jdbc.Driver 的区别
这篇文章讨论了`com.mysql.jdbc.Driver`和`com.mysql.cj.jdbc.Driver`两个MySQL驱动类的区别,指出`com.mysql.jdbc.Driver`适用于MySQL 5的`mysql-connector-java`版本,而`com.mysql.cj.jdbc.Driver`适用于MySQL 6及以上版本的`mysql-connector-java`。文章还提到了在实际使用中如何根据MySQL版本选择合适的驱动类。
com.mysql.jdbc.Driver 和 com.mysql.cj.jdbc.Driver 的区别