深度 | 为什么要利用NLP做情感分析?

简介:

多数人不能准确把握人类的情感变化,我也不例外,但是计算机却可以做到这一点。基于上面的事实,我们要讲述一件你也许已经熟知的机器学习分支——自然语言处理(NLP),这听起来很像计算机试图学习并理解我们平时说的“自然语言”。但是我们并不满足于此,我们要做一件神奇的事,那就是“情感分析”。听到计算机能分析人类情感这件事,很多人肯定会觉得有些不可思议,但这正是我们下面要谈论的。

71ac006e7765dc954f2991990b2476c9bfd299cc

自然语言处理

我们稍微回顾一下,很多程序员都知道人与人和人与计算机交流的方法有很大的区别。例如,当我们写程序的时候必须严格遵守语法和格式的要求,但人与人交流就会自由很多。人与人交流的过程中,可以用不同长度的句子表达相同的含义,同样长度的句子表达不同的含义。你应该意识到这对计算机来说是很复杂的。

随着人工智能技术越来越多的应用到我们的工作和日常生活中,用我们熟悉的语言与计算机交互变的越来越重要。虽然我们总是可以要求“码农”写更多的代码,但是我们不能要求顾客以写代码的方式向Siri咨询天气状况。很显然,顾客用自然语言与Siri交流更高效。

情感分析

自然语言处理只是冰山一角,这是因为人与人交流不是文字或文字堆砌的句子所能表达的,而是一个微妙且复杂的过程。在生活中,你可以根据朋友问问题的语气来判断他的情绪,是无聊、生气或者好奇。即使是在纯文字的聊天中,你也可以根据顾客的用词和标点判断他是否愤怒。又或者,当你读一本书的评论时,虽然评论者没有明确说出他对书的态度,但你可以根据评论内容判断出读者喜欢或者不喜欢这本书。

情感就像是将声调、配套的文字以及语言风格杂糅在一起。要让计算机真正理解人类日常交流用语,单单了解单词的定义是远远不够的,计算机还要理解人类的情感,只有这样才能最终理解人每天的交流方式。

深度学习

在深度学习中,将大量自然语言实例标定为正样本或负样本,然后用这些实例训练网络参数,最后我们会得到识别新样本实例的情感分析模型。互联网论坛越来越受欢迎(基于语音的虚拟助手也日益流行),这给我们提供了充足的语料去训练我们的模型,一旦模型训练好了,就可以用来解决新的问题。

59c071c81efc44b9eaa118b5969e79a3a6acdfad

举个例子,一般情况下,假设你是在网络课堂学习的学生,你会将困扰自己的问题放到课程相关的论坛上。人工智能的客服就不仅可以确定你困惑的主题,还可以分析你因此沮丧或气馁的程度,并给出合理的反馈。因为人工智能的存在,上面的想法已经变成现实。

情感分析的应用

情感分析可以应用的地方有很多,假如你是一名媒体工作者,你可以爬取网上大量有关电影的评论,训练情感分析模型来了解人们喜欢和不喜欢的电影。假如你在投资部门工作,可以构建有助于预测股票市场的模型,通过人们在论坛中的留言来评估他们对股票的乐观程度。假如你在政府部门工作,情感分析模型会评估人们看推特的演讲时情感变化情分析他们对演讲内容的爱憎程度。难以想象情感分析模型对我们的影响。

d10ddb27e818bd92ef717486bc6638250fb6db47

深度学习工具使得这些变成现实,对于动态预测任务,甚至可以做到实时预测。你可以实现一个演讲者可以看到演讲现场数据分析的界面,这样演讲者可以得到及时反馈,演讲的内容才可能更大限度地引起共鸣。你也可以实现一个自动投资的模型,它根据对不同股票涨跌的持续观察来自主进行投资。你还可以实现一个课堂助手,可以实时提醒老师课堂氛围是活跃还是低迷。

这些是深度学习最令人惊奇的地方,我会在这个领域继续走下去。当然人们很难解释深度学习的深层原理,但是当你想象这项技术的应用时,这些事情就变得非常令我们期待。如果你掌握了深度学习,那将取决于你如何利用它去改变世界。所以,你还在等什么,快加入这场革命吧。


原文发布时间为:2017-12-22

本文作者:申利彬

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
机器学习/深度学习 自然语言处理 监控
利用深度学习技术实现自然语言处理中的情感分析
本文将深入探讨如何利用深度学习技术在自然语言处理领域中实现情感分析。通过介绍情感分析的背景和原理,结合深度学习模型如LSTM、BERT等的应用,帮助读者了解情感分析的重要性以及如何利用最新技术实现更准确的情感识别。
|
机器学习/深度学习 自然语言处理 监控
利用深度学习技术实现自然语言处理中的情感分析
本文将深入探讨如何利用深度学习技术,特别是神经网络模型,来实现自然语言处理领域中的情感分析任务。通过结合深度学习算法和大规模文本数据集,可以实现更准确和高效的情感分析,为情感识别和情感推断提供更好的解决方案。
|
9月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。
571 6
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
1173 2
|
机器学习/深度学习 自然语言处理 算法
自然语言处理中的情感分析技术
自然语言处理中的情感分析技术
|
机器学习/深度学习 存储 自然语言处理
自然语言处理中的情感分析技术:深入解析与应用前景
【8月更文挑战第4天】情感分析技术作为自然语言处理领域的重要分支,具有广泛的应用前景和重要的研究价值。通过不断的技术创新和应用实践,我们可以期待情感分析在未来发挥更大的作用,为我们的生活和工作带来更多便利和效益。
1167 10
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】自然语言处理(NLP)的突破,关注NLP在机器翻译、情感分析、聊天机器人等方面的最新研究成果和应用案例。
自然语言处理(NLP)作为人工智能的一个重要分支,近年来取得了显著的突破,特别在机器翻译、情感分析、聊天机器人等领域取得了显著的研究成果和广泛的应用。以下是对这些领域最新研究成果和应用案例的概述,并附带相应的代码实例。
1218 1
|
机器学习/深度学习 人工智能 自然语言处理
Python自然语言处理实战:文本分类与情感分析
本文探讨了自然语言处理中的文本分类和情感分析技术,阐述了基本概念、流程,并通过Python示例展示了Scikit-learn和transformers库的应用。面对多义性理解等挑战,研究者正探索跨域适应、上下文理解和多模态融合等方法。随着深度学习的发展,这些技术将持续推动人机交互的进步。
715 1
|
自然语言处理 监控 数据挖掘
|
自然语言处理 算法 数据挖掘
自然语言处理 Paddle NLP - 情感分析技术及应用SKEP-实践
自然语言处理 Paddle NLP - 情感分析技术及应用SKEP-实践
353 0

热门文章

最新文章