重磅译制 | 视频更新:牛津大学xDeepMind自然语言处理课程 第4讲(下)RNN语言建模

简介: 牛津大学Deep NLP是一门关于自然语言处理(NLP)的高阶课程。课程由牛津大学和谷歌DeepMind(AlphaGo的开发机构)联合开设,是牛津大学计算机系2017年春季学期最新课程。由Phil Blunsom主讲,同时邀请到多位来自DeepMind和NVIDIA的业界讲师来做客座讲座。

牛津大学Deep NLP是一门关于自然语言处理(NLP)的高阶课程。课程由牛津大学谷歌DeepMind(AlphaGo的开发机构)联合开设,是牛津大学计算机系2017年春季学期最新课程。由Phil Blunsom主讲,同时邀请到多位来自DeepMind和NVIDIA的业界讲师来做客座讲座。

大数据文摘已联系课程主讲人取得翻译授权,并联合北京邮电大学模式识别实验室组织了视频汉化,免费发布。

课程现已上线网易云课堂,请大家多给我们好评,为辛勤工作的字幕组打CALL!

学习地址 http://study.163.com/course/introduction/1004336028.htm

本课时PPT精华

141689f7d9fcbe4d63aaea2ff1099a81af12729c


课程英文资料地址:

https://github.com/oxford-cs-deepnlp-2017/lectures


原文发布时间为:2017-11-26

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
机器学习/深度学习 存储 自然语言处理
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
651 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理的未来:让机器“听懂”人类语言的奥秘
1. 引言 在数字化浪潮中,自然语言处理(NLP)已经成为人工智能的核心技术之一。无论是智能助手、翻译应用,还是社交媒体的情感分析,NLP正以不可思议的速度改变我们的生活。根据市场研究,NLP的市场规模预计将在未来几年内快速增长,成为众多行业不可或缺的组成部分。本文将深入探讨NLP的基础知识、关键技术、实际应用以及未来的发展趋势,帮助你全面了解这一引人入胜的领域。
|
人工智能 自然语言处理 PyTorch
AutoVFX:自然语言驱动的视频特效编辑框架
AutoVFX是一个先进的自然语言驱动的视频特效编辑框架,由伊利诺伊大学香槟分校的研究团队开发。该框架能够根据自然语言指令自动创建真实感和动态的视觉特效(VFX)视频,集成了神经场景建模、基于大型语言模型(LLM)的代码生成和物理模拟技术。本文详细介绍了AutoVFX的主要功能、技术原理以及如何运行该框架。
300 1
AutoVFX:自然语言驱动的视频特效编辑框架
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
814 1
|
机器学习/深度学习 存储 自然语言处理
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
|
机器学习/深度学习 自然语言处理 算法
【NPL自然语言处理】带你迅速了解传统RNN模型
【NPL自然语言处理】带你迅速了解传统RNN模型
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与自然语言处理的融合:重塑语言理解的未来
【8月更文挑战第5天】在自然语言处理(NLP)领域,深度学习技术引发了一场革命,极大提升了语言理解与生成能力。本文探讨深度学习与NLP的融合现状、关键技术如RNN、LSTM、GRU及Transformer模型,预训练语言模型如BERT和GPT的作用,以及迁移学习的应用。这些技术已在机器翻译、文本分类、智能客服等多个场景取得显著成果,并展望未来模型效率、可解释性、跨模态融合及个性化服务等发展趋势。
|
SQL 自然语言处理 关系型数据库
PolarDB自然语言到SQL语言转义
PolarDB自然语言到SQL语言转义

热门文章

最新文章